Different mechanism of capacitance change for gas detection using semiconducting and metallic single-walled carbon nanotubes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seong Chu Lim | - |
dc.contributor.author | Yoon J.H. | - |
dc.contributor.author | Duong D.L. | - |
dc.contributor.author | Cho Y.W. | - |
dc.contributor.author | Tae Hyung Kim | - |
dc.contributor.author | Kim S.M. | - |
dc.contributor.author | Hwang H.R. | - |
dc.contributor.author | Young Hee Lee | - |
dc.date.available | 2015-09-01T01:20:20Z | - |
dc.date.created | 2015-02-16 | - |
dc.date.issued | 2015-03 | - |
dc.identifier.issn | 1567-1739 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1803 | - |
dc.description.abstract | Semiconducting single-walled carbon nanotubes (s-SWCNTs) with lower absorption energy of NO2 gas exhibited higher sensitivity than metallic SWCNTs. The result originated from quantum capacitance of s- SWCNTs, which was readily affected by charge transfer, whereas that of m-SWCNTs showed no change with even more transferred charges. However, m-SWCNT that were aligned polarize adsorbed gases on the surface by a local field that contributed the capacitance changes of m-SWCNT networks. This is a newly introduced detection mechanism of gas sensing using m-SWCNTs. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject | Carbon nanotubes, Gas sensor, Quantum capacitance, Orientation polarization, Density of states | - |
dc.title | Different mechanism of capacitance change for gas detection using semiconducting and metallic single-walled carbon nanotubes | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000349904900037 | - |
dc.identifier.scopusid | 2-s2.0-84921535177 | - |
dc.identifier.rimsid | 17572 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Seong Chu Lim | - |
dc.contributor.affiliatedAuthor | Tae Hyung Kim | - |
dc.contributor.affiliatedAuthor | Young Hee Lee | - |
dc.identifier.doi | 10.1016/j.cap.2015.01.013 | - |
dc.identifier.bibliographicCitation | CURRENT APPLIED PHYSICS, v.15, no.3, pp.377 - 382 | - |
dc.citation.title | CURRENT APPLIED PHYSICS | - |
dc.citation.volume | 15 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 377 | - |
dc.citation.endPage | 382 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.scptc | 0 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.subject.keywordPlus | GENERALIZED GRADIENT APPROXIMATION | - |
dc.subject.keywordPlus | CHEMICAL-DETECTION | - |
dc.subject.keywordPlus | AB-INITIO | - |
dc.subject.keywordPlus | SENSOR | - |
dc.subject.keywordPlus | NO2 | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | ARRAYS | - |
dc.subject.keywordAuthor | Carbon nanotubes | - |
dc.subject.keywordAuthor | Gas sensor | - |
dc.subject.keywordAuthor | Quantum capacitance | - |
dc.subject.keywordAuthor | Orientation polarization | - |
dc.subject.keywordAuthor | Density of states | - |