Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wu, Q | - |
dc.contributor.author | Jung, SJ | - |
dc.contributor.author | Jang, SK | - |
dc.contributor.author | Lee, J | - |
dc.contributor.author | Jeon, I | - |
dc.contributor.author | Suh, H | - |
dc.contributor.author | Kim, YH | - |
dc.contributor.author | Young Hee Lee | - |
dc.contributor.author | Lee, S | - |
dc.contributor.author | Young Jae Song | - |
dc.date.available | 2015-09-01T01:20:18Z | - |
dc.date.created | 2015-07-06 | - |
dc.date.issued | 2015-06 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1799 | - |
dc.description.abstract | We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H-2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 mu m, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for engineering the band structures of large-area graphene for electronic device applications | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000355987300007 | - |
dc.identifier.scopusid | 2-s2.0-84930834693 | - |
dc.identifier.rimsid | 20529 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Young Hee Lee | - |
dc.contributor.affiliatedAuthor | Young Jae Song | - |
dc.identifier.doi | 10.1039/c5nr02716k | - |
dc.identifier.bibliographicCitation | NANOSCALE, v.7, no.23, pp.10357 - 10361 | - |
dc.relation.isPartOf | NANOSCALE | - |
dc.citation.title | NANOSCALE | - |
dc.citation.volume | 7 | - |
dc.citation.number | 23 | - |
dc.citation.startPage | 10357 | - |
dc.citation.endPage | 10361 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 11 | - |
dc.description.scptc | 10 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | HEXAGONAL BORON-NITRIDE | - |
dc.subject.keywordPlus | HIGH-QUALITY | - |
dc.subject.keywordPlus | LARGE-AREA | - |
dc.subject.keywordPlus | LAYER GRAPHENE | - |
dc.subject.keywordPlus | SINGLE-LAYER | - |
dc.subject.keywordPlus | COPPER | - |
dc.subject.keywordPlus | ELECTRONICS | - |