BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning

DC Field Value Language
dc.contributor.authorKoo, Ja Hoon-
dc.contributor.authorLee, Young Joong-
dc.contributor.authorHye Jin Kim-
dc.contributor.authorMatusik, Wojciech-
dc.contributor.authorDae-Hyeong Kim-
dc.contributor.authorJeong, Hyoyoung-
dc.date.accessioned2025-01-06T06:00:13Z-
dc.date.available2025-01-06T06:00:13Z-
dc.date.created2024-07-15-
dc.date.issued2024-07-
dc.identifier.issn1523-9829-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/16072-
dc.description.abstractRecent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.-
dc.language영어-
dc.publisherAnnual Reviews, Inc.-
dc.titleElectronic Skin: Opportunities and Challenges in Convergence with Machine Learning-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001273796600014-
dc.identifier.scopusid2-s2.0-85197676053-
dc.identifier.rimsid83543-
dc.contributor.affiliatedAuthorHye Jin Kim-
dc.contributor.affiliatedAuthorDae-Hyeong Kim-
dc.identifier.doi10.1146/annurev-bioeng-103122-032652-
dc.identifier.bibliographicCitationAnnual Review of Biomedical Engineering, v.26, no.1, pp.331 - 355-
dc.relation.isPartOfAnnual Review of Biomedical Engineering-
dc.citation.titleAnnual Review of Biomedical Engineering-
dc.citation.volume26-
dc.citation.number1-
dc.citation.startPage331-
dc.citation.endPage355-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.subject.keywordPlusTOUGH-
dc.subject.keywordPlusPOLYURETHANE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusCONVOLUTIONAL NEURAL-NETWORKS-
dc.subject.keywordPlusTACTILE-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordAuthorelectronic prostheses-
dc.subject.keywordAuthorelectronic skins-
dc.subject.keywordAuthormachine learning algorithms-
dc.subject.keywordAuthorrobotic skins-
dc.subject.keywordAuthorskin-mounted electronics-
dc.subject.keywordAuthorwearable electronics-
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse