Tailoring Interlayer Coupling in Few-Layer MoS2 with Stacking Configuration
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jong Hun | - |
dc.contributor.author | Kyung-Hwan Jin | - |
dc.contributor.author | Jung, Yeonjoon | - |
dc.contributor.author | Lee, Gwan-Hyoung | - |
dc.contributor.author | Baik, Jaeyoon | - |
dc.contributor.author | Kim, Daehyun | - |
dc.contributor.author | Moon-Ho Jo | - |
dc.contributor.author | Baddorf, Arthur P. | - |
dc.contributor.author | Li, An-Ping | - |
dc.contributor.author | Park, Jewook | - |
dc.date.accessioned | 2024-12-12T07:32:47Z | - |
dc.date.available | 2024-12-12T07:32:47Z | - |
dc.date.created | 2024-08-05 | - |
dc.date.issued | 2024-07 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15762 | - |
dc.description.abstract | We manipulated the stacking configuration of a few-layer MoS2 to investigate the impact of interlayer coupling on electrical band engineering. By simultaneously synthesizing two distinct stacking types of MoS2 islands, wedding cake (W) and spiral (S), on the same substrate, we explored layer-dependent electrical properties under identical experimental conditions. We used multiple scanning probe microscopy techniques to map local electronic properties with respect to the number of layers, stacking configurations, and local heterogeneities. First-principles calculations verified the role of distinct interlayer coupling in terms of the interlayer distance. Our findings highlight the critical role of interlayer coupling in applications of transition metal dichalcogenides. | - |
dc.language | 영어 | - |
dc.publisher | American Chemical Society | - |
dc.title | Tailoring Interlayer Coupling in Few-Layer MoS2 with Stacking Configuration | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001277943800001 | - |
dc.identifier.scopusid | 2-s2.0-85199508319 | - |
dc.identifier.rimsid | 83779 | - |
dc.contributor.affiliatedAuthor | Kyung-Hwan Jin | - |
dc.contributor.affiliatedAuthor | Moon-Ho Jo | - |
dc.identifier.doi | 10.1021/acsanm.4c02834 | - |
dc.identifier.bibliographicCitation | ACS Applied Nano Materials, v.7, no.15, pp.17214 - 17220 | - |
dc.relation.isPartOf | ACS Applied Nano Materials | - |
dc.citation.title | ACS Applied Nano Materials | - |
dc.citation.volume | 7 | - |
dc.citation.number | 15 | - |
dc.citation.startPage | 17214 | - |
dc.citation.endPage | 17220 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordAuthor | Kelvin probe microscopy | - |
dc.subject.keywordAuthor | scanning tunneling microscopy andspectroscopy | - |
dc.subject.keywordAuthor | density functional theory | - |
dc.subject.keywordAuthor | Interlayer coupling | - |
dc.subject.keywordAuthor | electrical bandgap | - |
dc.subject.keywordAuthor | localdensity of states | - |
dc.subject.keywordAuthor | transition metal dichalcogenides | - |