Sapphire substrates for large-area 2D transition metal dichalcogenides synthesis: A brief review
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Krishna, Swathi | - |
dc.contributor.author | Soo Ho Choi | - |
dc.contributor.author | Kim, Soo Min | - |
dc.contributor.author | Ki Kang Kim | - |
dc.date.accessioned | 2024-03-11T22:00:30Z | - |
dc.date.available | 2024-03-11T22:00:30Z | - |
dc.date.created | 2024-02-06 | - |
dc.date.issued | 2024-03 | - |
dc.identifier.issn | 1567-1739 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14894 | - |
dc.description.abstract | Two-dimensional transition metal dichalcogenides (TMDs) have attracted significant attention owing to their unique physical properties, such as strong spin-orbit coupling, giant magnetoresistance, and high carrier mobility. To study their fundamentals and develop high-performance electronic devices, high-quality large-area TMD films are inevitably required. Recently, sapphire substrate has emerged as a promising wafer-scale growth platform for synthesizing TMDs via chemical vapor deposition. In this brief review, we address the synthesis of both polycrystalline and single-crystalline TMDs on c-plane and miscut sapphire substrates. In addition, post-treatment processes are investigated, including H2-treatement and oxidation, to achieve a well-defined surface structure and enhance the reproducibility of single-crystalline TMD synthesis. We conclude by offering a summary and insights into future research directions. © 2023 | - |
dc.language | 영어 | - |
dc.publisher | The Korean Physical Society | - |
dc.title | Sapphire substrates for large-area 2D transition metal dichalcogenides synthesis: A brief review | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001172452300001 | - |
dc.identifier.scopusid | 2-s2.0-85183316773 | - |
dc.identifier.rimsid | 82523 | - |
dc.contributor.affiliatedAuthor | Soo Ho Choi | - |
dc.contributor.affiliatedAuthor | Ki Kang Kim | - |
dc.identifier.doi | 10.1016/j.cap.2023.11.016 | - |
dc.identifier.bibliographicCitation | Current Applied Physics, v.59, pp.208 - 213 | - |
dc.relation.isPartOf | Current Applied Physics | - |
dc.citation.title | Current Applied Physics | - |
dc.citation.volume | 59 | - |
dc.citation.startPage | 208 | - |
dc.citation.endPage | 213 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | OPTOELECTRONICS | - |
dc.subject.keywordPlus | LAYERS | - |
dc.subject.keywordPlus | WSE2 | - |
dc.subject.keywordAuthor | Chemical vapor deposition | - |
dc.subject.keywordAuthor | Epitaxial growth | - |
dc.subject.keywordAuthor | Miscut | - |
dc.subject.keywordAuthor | Sapphire | - |
dc.subject.keywordAuthor | Surface engineering | - |
dc.subject.keywordAuthor | Transition metal dichalcogenides | - |