BROWSE

Related Scientist

caldes's photo.

caldes
원자제어저차원전자계연구단
more info

ITEM VIEW & DOWNLOAD

Measuring Nonlocal Brane Order with Error-Corrected Quantum Gas Microscopes

Cited 0 time in webofscience Cited 0 time in scopus
149 Viewed 0 Downloaded
Title
Measuring Nonlocal Brane Order with Error-Corrected Quantum Gas Microscopes
Author(s)
Hur, Junhyeok; Wonjun Lee; Kwon, Kiryang; Huh, Seungjung; Gil Young Cho; Jae-Yoon Choi
Publication Date
2024-01
Journal
Physical Review X, v.14, no.1
Publisher
American Physical Society
Abstract
Exotic quantum many-body states, such as Haldane and spin liquid phases, can exhibit remarkable features like fractional excitations and non-Abelian statistics and offer new understandings of quantum entanglement in many-body quantum systems. These phases are classified by nonlocal correlators that can be directly measured in atomic analog quantum simulating platforms, such as optical lattices and Rydberg atom arrays. However, characterizing these phases in large systems is experimentally challenging because they are sensitive to local errors like atom loss, which suppress its signals exponentially. Additionally, protocols for systematically identifying and mitigating uncorrelated errors in analog quantum simulators are lacking. Here, we address these challenges by developing an error-correction method for large-scale neutral atom quantum simulators using optical lattices. Our error-correction method can distinguish correlated particle-hole pairs from uncorrelated holes in the Mott insulator. After removing the uncorrelated errors, we observe a dramatic improvement in the nonlocal parity correlator and find the perimeter scaling law. Furthermore, the error model provides a statistical estimation of fluctuations in site occupation, from which we measure the generalized brane correlator and confirm that it can be an order parameter for Mott insulators in two dimensions. Our work provides a promising avenue for investigating and characterizing exotic phases of matters in large-scale quantum simulators. © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the https://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
URI
https://pr.ibs.re.kr/handle/8788114/14775
DOI
10.1103/PhysRevX.14.011003
ISSN
2160-3308
Appears in Collections:
Center for Artificial Low Dimensional Electronic Systems(원자제어 저차원 전자계 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse