BROWSE

Related Scientist

cmsd's photo.

cmsd
분자분광학및동력학연구단
more info

ITEM VIEW & DOWNLOAD

Acousto-optic Volumetric Gating for Reflection-Mode Deep Optical Imaging within a Scattering Medium

Cited 0 time in webofscience Cited 0 time in scopus
135 Viewed 0 Downloaded
Title
Acousto-optic Volumetric Gating for Reflection-Mode Deep Optical Imaging within a Scattering Medium
Author(s)
Hakseok Ko; Junghoon Kim; Jin Hee Hong; Junyeob Cheon; Seungwoo Lee; Mooseok Jang; Wonshik Choi
Publication Date
2023-09
Journal
ACS PHOTONICS, v.10, no.10, pp.3664 - 3673
Publisher
AMER CHEMICAL SOC
Abstract
Various external gating approaches, based on position, time, and polarization, have proven to be effective in selectively rejecting multiply scattered waves, thereby extending the imaging depth of deep-tissue optical microscopy. However, in a highly scattering medium, a significant portion of multiply scattered waves can bypass these gating operations because of the dissociation between the wave properties inside and outside the scattering medium. Here, we propose a method, termed volumetric gating, that introduces ultrasound focus to confocal reflectance imaging to directly suppress the multiply scattered waves traveling outside the imaging volume. The volumetric gating axially rejects the multiply scattered wave traveling to a depth shallower than the object plane while simultaneously suppressing the deeper penetrating portion extended beyond the transverse area of the ultrasonic focus of 30 x 90 mu m(2). These joint gating actions along the axial and lateral directions attenuate the multiply scattered waves by a factor of 1/1000 or smaller, thereby extending the imaging depth to 12.1 times the scattering mean free path with a diffraction-limited resolution of 1.5 mu m. We showed that volumetric gating enables noninvasive imaging of the internal microscopic structures inside tubular organs such as the mouse colon and small intestine. We further developed theoretical and experimental frameworks to characterize the axial distribution of optical energy within scattering media. The volumetric gating will serve as an important addition to deep-tissue imaging modalities and a useful tool for studying wave propagation in scattering media.
URI
https://pr.ibs.re.kr/handle/8788114/14566
DOI
10.1021/acsphotonics.3c00769
ISSN
2330-4022
Appears in Collections:
Center for Molecular Spectroscopy and Dynamics(분자 분광학 및 동력학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse