Improvement of Thermodynamic Phase Stability and High-Rate Capability of Li Layered Oxides
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ji Hwan Kim | - |
dc.contributor.author | Hwang, Juncheol | - |
dc.contributor.author | Young-Hoon Lee | - |
dc.contributor.author | Song, Seok Hyun | - |
dc.contributor.author | Lee, Jaewoon | - |
dc.contributor.author | Lee, Si-Hwan | - |
dc.contributor.author | Moon, Won-Jin | - |
dc.contributor.author | Kim, Hyungsub | - |
dc.contributor.author | Kim, Duho | - |
dc.contributor.author | Yu, Seung-Ho | - |
dc.contributor.author | Yung-Eun Sung | - |
dc.date.accessioned | 2024-01-08T22:00:58Z | - |
dc.date.available | 2024-01-08T22:00:58Z | - |
dc.date.created | 2023-12-18 | - |
dc.date.issued | 2023-11 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14514 | - |
dc.description.abstract | The use of elemental doping in lithium cobalt oxide (LCO) cathode material at high cutoff voltage is a widely adopted technique in the field of rechargeable batteries to mitigate multiple unfavorable phase transitions. However, there is still a lack of fundamental understanding regarding the rationality of each doping element implemented in this method, specifically considering the various thermodynamic stability and phase transitions. Herein, we investigated the effect of Ti doping on an O2 phase LCO (LCTO) cathode material that exhibited enhanced rate performance. We suggest that the incorporation of Ti into an O2 phase LCO results in the mitigation of multiple-phase transitions and the improvement of phase stability, thereby yielding a high-rate-capable cathode material. Through a combination of experimental and computational calculations, we demonstrate that Ti doping improves the thermodynamic stability and kinetics of Li-ions during the cycling process. © 2023 American Chemical Society | - |
dc.language | 영어 | - |
dc.publisher | American Chemical Society | - |
dc.title | Improvement of Thermodynamic Phase Stability and High-Rate Capability of Li Layered Oxides | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001123056500001 | - |
dc.identifier.scopusid | 2-s2.0-85179140586 | - |
dc.identifier.rimsid | 82258 | - |
dc.contributor.affiliatedAuthor | Ji Hwan Kim | - |
dc.contributor.affiliatedAuthor | Young-Hoon Lee | - |
dc.contributor.affiliatedAuthor | Yung-Eun Sung | - |
dc.identifier.doi | 10.1021/acsami.3c13260 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials and Interfaces, v.15, no.48, pp.55837 - 55847 | - |
dc.relation.isPartOf | ACS Applied Materials and Interfaces | - |
dc.citation.title | ACS Applied Materials and Interfaces | - |
dc.citation.volume | 15 | - |
dc.citation.number | 48 | - |
dc.citation.startPage | 55837 | - |
dc.citation.endPage | 55847 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | CATHODE MATERIAL | - |
dc.subject.keywordPlus | DOPED LICOO2 | - |
dc.subject.keywordPlus | HIGH-ENERGY | - |
dc.subject.keywordPlus | LITHIUM | - |
dc.subject.keywordPlus | REALIZATION | - |
dc.subject.keywordPlus | TRANSITIONS | - |
dc.subject.keywordPlus | CHALLENGES | - |
dc.subject.keywordPlus | BATTERIES | - |
dc.subject.keywordPlus | CHARGE | - |
dc.subject.keywordAuthor | first-principles calculations | - |
dc.subject.keywordAuthor | high-rate capability | - |
dc.subject.keywordAuthor | ion-exchange | - |
dc.subject.keywordAuthor | lithium-ion battery | - |
dc.subject.keywordAuthor | thermodynamic phase stability | - |