BROWSE

Related Scientist

cinap's photo.

cinap
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

Effect of surface morphology on friction of graphene on various substrates

DC Field Value Language
dc.contributor.authorDae-Hyun Cho-
dc.contributor.authorLei Wang-
dc.contributor.authorJin-Seon Kim-
dc.contributor.authorGwan-Hyoung Lee-
dc.contributor.authorKim, Eok Su-
dc.contributor.authorLee, Sunhee-
dc.contributor.authorLee, Sang Yoon-
dc.contributor.authorHone, James-
dc.contributor.authorLee, Changgu-
dc.date.available2015-04-20T07:06:56Z-
dc.date.created2014-08-11-
dc.date.issued2013-04-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/1354-
dc.description.abstractThe friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion. © The Royal Society of Chemistry 2013.-
dc.description.uri1-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectMONOLAYER GRAPHENE-
dc.subjectFORCE MICROSCOPY-
dc.subjectSHEETS-
dc.subjectGRAPHITE-
dc.subjectSCALE-
dc.subjectFILMS-
dc.subjectSIO2-
dc.titleEffect of surface morphology on friction of graphene on various substrates-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000316120100068-
dc.identifier.scopusid2-s2.0-84889774457-
dc.identifier.rimsid592ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorDae-Hyun Cho-
dc.contributor.affiliatedAuthorJin-Seon Kim-
dc.identifier.doi10.1039/c3nr34181j-
dc.identifier.bibliographicCitationNANOSCALE, v.5, no.7, pp.3063 - 3069-
dc.citation.titleNANOSCALE-
dc.citation.volume5-
dc.citation.number7-
dc.citation.startPage3063-
dc.citation.endPage3069-
dc.date.scptcdate2018-10-01-
dc.description.wostc52-
dc.description.scptc54-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusMONOLAYER GRAPHENE-
dc.subject.keywordPlusFORCE MICROSCOPY-
dc.subject.keywordPlusSHEETS-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusSCALE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusSIO2-
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
297_(Nanoscale) Effect of surface morphology on friction of grphene on various substrates.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse