In addition to modifying surface properties, self-assembled monolayers, SAMs, on nanoparticles can selectively incorporate small molecules from the surrounding solution. This selectivity has been used in the design of substrate-specific catalytic systems but its degree has not been quantified. This work uses catalytic centers embedded in on-nanoparticle hydrophobic SAMs to monitor and quantify the partitioning of molecules between the bulk solvent and these monolayers. A combination of experiments and theory allows us to relate the logarithm of the incorporation-into-SAM constant to the "bulk" log P values, characterizing the incoming substrates. These results are in line with classic, semi-empirical linear free energy relationships between partitioning solvent systems; in this way, they substantiate the view of nanoscopic on-particle SAMs acting akin to a bulk solvent phase.