Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Woong | - |
dc.contributor.author | Choi, Yongjun | - |
dc.contributor.author | Choi, Eunsuh | - |
dc.contributor.author | Yun, Hyewon | - |
dc.contributor.author | Jung, Wonsang | - |
dc.contributor.author | Lee, Woong Hee | - |
dc.contributor.author | Oh, Hyung-Suk | - |
dc.contributor.author | Won, Da Hye | - |
dc.contributor.author | Na, Jonggeol | - |
dc.contributor.author | Yun Jeong Hwang | - |
dc.date.accessioned | 2023-04-04T22:11:51Z | - |
dc.date.available | 2023-04-04T22:11:51Z | - |
dc.date.created | 2022-04-26 | - |
dc.date.issued | 2022-05 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13161 | - |
dc.description.abstract | A zero-gap membrane-electrode assembly (MEA) electrolyzer is a promising design for electrochemical CO2 reduction reactions (eCO(2)RRs), where gaseous CO2 is directly fed without catholyte. The zero-gap junction between the catalyst and the membrane can have distinct chemical environments and mass transfer properties from the conventional H-type cell but is rarely studied. In this work, we designed an integrated experimental-simulation study in MEA to understand the zero-gap junction and factors to determine the eCO(2)RR activity to multi-carbon production. We developed a simple synchronous ionomer/catalyst activation step under alkaline conditions to form jagged CuO nanoparticles whose unique morphological evolution facilitates the C2+ chemical production for the zero-gap MEA electrolyzer. Moreover, under gas-fed and high-current density conditions, computational fluid dynamics suggests that the mass transfer limitation of water as a proton source across the catalyst-membrane layer and cathode kinetic overpotential are critical to determining C2+ chemical production in the range of several micrometers. From the chemical-physical understanding, we achieved a high partial current density of 336.5 mA cm(-2) and a faradaic efficiency of 67.3% towards C2+ chemicals. | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000782472600001 | - |
dc.identifier.scopusid | 2-s2.0-85129271162 | - |
dc.identifier.rimsid | 78099 | - |
dc.contributor.affiliatedAuthor | Yun Jeong Hwang | - |
dc.identifier.doi | 10.1039/d1ta10939a | - |
dc.identifier.bibliographicCitation | JOURNAL OF MATERIALS CHEMISTRY A, v.10, no.19, pp.10363 - 10372 | - |
dc.relation.isPartOf | JOURNAL OF MATERIALS CHEMISTRY A | - |
dc.citation.title | JOURNAL OF MATERIALS CHEMISTRY A | - |
dc.citation.volume | 10 | - |
dc.citation.number | 19 | - |
dc.citation.startPage | 10363 | - |
dc.citation.endPage | 10372 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | ETHYLENE | - |
dc.subject.keywordPlus | SYSTEMS | - |
dc.subject.keywordPlus | CARBON-DIOXIDE | - |
dc.subject.keywordPlus | ELECTROCHEMICAL CONVERSION | - |
dc.subject.keywordPlus | ELECTROREDUCTION | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | COPPER | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordPlus | OXIDATION | - |