Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jungwon Park | - |
dc.contributor.author | Kim, Y.M. | - |
dc.contributor.author | Hong, S. | - |
dc.contributor.author | Han, B. | - |
dc.contributor.author | Nam, K.T. | - |
dc.contributor.author | Jung, Y. | - |
dc.date.accessioned | 2023-04-04T22:02:51Z | - |
dc.date.available | 2023-04-04T22:02:51Z | - |
dc.date.created | 2023-03-06 | - |
dc.date.issued | 2023-03 | - |
dc.identifier.issn | 2590-2393 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13089 | - |
dc.description.abstract | Colloidal nanoparticles are attractive materials for various energy and chemical applications. Due to their strictly tunable structure-function relationships, reproducibly synthesizing structurally homogeneous nanoparticles is a critical step toward making the nanoparticle technology commercially viable. However, due to a lack of general theoretical foundations for complex nanoparticle formation phenomena, the current synthesis optimizations of nanoparticles are mostly conducted based on the intuitions and trial-and-error-driven manual processes that are slow to explore a large synthesis parameter space. To accelerate these time-consuming and resource-demanding conventional synthesis approaches, we here describe a closed-loop pipeline that consists of robotic synthesis, automated materials characterization, machine-learning optimization, and computational prediction of desired structure-property relationships. We discuss the need and the current levels of automation in different parts of nanoparticle synthesis experiments with future directions and outlook. © 2023 Elsevier Inc. | - |
dc.language | 영어 | - |
dc.publisher | Cell Press | - |
dc.title | Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000991291500001 | - |
dc.identifier.scopusid | 2-s2.0-85148695822 | - |
dc.identifier.rimsid | 80046 | - |
dc.contributor.affiliatedAuthor | Jungwon Park | - |
dc.identifier.doi | 10.1016/j.matt.2023.01.018 | - |
dc.identifier.bibliographicCitation | Matter, v.6, no.3, pp.677 - 690 | - |
dc.relation.isPartOf | Matter | - |
dc.citation.title | Matter | - |
dc.citation.volume | 6 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 677 | - |
dc.citation.endPage | 690 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | MICROFLUIDIC SYNTHESIS | - |
dc.subject.keywordPlus | CDSE NANOCRYSTALS | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordPlus | EVOLUTION | - |
dc.subject.keywordPlus | DISCOVERY | - |
dc.subject.keywordPlus | EFFICIENT | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordAuthor | MAP1: Discovery | - |
dc.subject.keywordAuthor | synthesis robot | - |
dc.subject.keywordAuthor | automated synthesis | - |
dc.subject.keywordAuthor | characterization | - |
dc.subject.keywordAuthor | closed-loop optimization | - |
dc.subject.keywordAuthor | colloidal nanoparticles | - |
dc.subject.keywordAuthor | computational chemistry | - |
dc.subject.keywordAuthor | machine learning | - |