BROWSE

Related Scientist

myung,kyungjae's photo.

myung,kyungjae
유전체항상성연구단
more info

ITEM VIEW & DOWNLOAD

O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine

Cited 0 time in webofscience Cited 0 time in scopus
183 Viewed 0 Downloaded
Title
O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine
Author(s)
Kim, Kibum; Yoo, Hee Chan; Byung Gyu Kim; Kim, Sulhee; Sung, Yulseung; Yoon, Ina; Yu, Ya Chun; Park, Seung Joon; Kim, Jong Hyun; Kyungjae Myung; Hwang, Kwang Yeon; Kim, Sunghoon; Han, Jung Min
Publication Date
2022-05
Journal
NATURE COMMUNICATIONS, v.13, no.1
Publisher
NATURE PORTFOLIO
Abstract
All living organisms have the ability to sense nutrient levels to coordinate cellular metabolism. Despite the importance of nutrient-sensing pathways that detect the levels of amino acids and glucose, how the availability of these two types of nutrients is integrated is unclear. Here, we show that glucose availability regulates the central nutrient effector mTORC1 through intracellular leucine sensor leucyl-tRNA synthetase 1 (LARS1). Glucose starvation results in O-GlcNAcylation of LARS1 on residue S1042. This modification inhibits the interaction of LARS1 with RagD GTPase and reduces the affinity of LARS1 for leucine by promoting phosphorylation of its leucine-binding site by the autophagy-activating kinase ULK1, decreasing mTORC1 activity. The lack of LARS1 O-GlcNAcylation constitutively activates mTORC1, supporting its ability to sense leucine, and deregulates protein synthesis and leucine catabolism under glucose starvation. This work demonstrates that LARS1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Leucyl-tRNA synthetase 1 (LARS1) is a leucine sensor for mTORC1 signaling and regulates leucine utilization depending on glucose availability. Here, the author show that O-GlcNAcylation of LARS1 is crucial for its ability to regulate mTORC1 activity and leucine metabolism upon glucose starvation.
URI
https://pr.ibs.re.kr/handle/8788114/12938
DOI
10.1038/s41467-022-30696-8
ISSN
2041-1723
Appears in Collections:
Center for Genomic Integrity(유전체 항상성 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse