BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxidesHighly Cited Paper

DC Field Value Language
dc.contributor.authorDonggun Eum-
dc.contributor.authorByunghoon Kim-
dc.contributor.authorSong, Jun-Hyuk-
dc.contributor.authorPark, Hyeokjun-
dc.contributor.authorJang, Ho-Young-
dc.contributor.authorKim, Sung Joo-
dc.contributor.authorCho, Sung-Pyo-
dc.contributor.authorMyeong Hwan Lee-
dc.contributor.authorHeo, Jae Hoon-
dc.contributor.authorPark, Jaehyun-
dc.contributor.authorKo, Youngmin-
dc.contributor.authorPark, Sung Kwan-
dc.contributor.authorKim, Jinsoo-
dc.contributor.authorKyungbae Oh-
dc.contributor.authorDo-Hoon Kim-
dc.contributor.authorKang, Seok Ju-
dc.contributor.authorKisuk Kang-
dc.date.accessioned2023-01-27T02:00:06Z-
dc.date.available2023-01-27T02:00:06Z-
dc.date.created2022-03-29-
dc.date.issued2022-06-
dc.identifier.issn1476-1122-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12934-
dc.description.abstract© 2022, The Author(s), under exclusive licence to Springer Nature Limited.Lattice oxygen redox offers an unexplored way to access superior electrochemical properties of transition metal oxides (TMOs) for rechargeable batteries. However, the reaction is often accompanied by unfavourable structural transformations and persistent electrochemical degradation, thereby precluding the practical application of this strategy. Here we explore the close interplay between the local structural change and oxygen electrochemistry during short- and long-term battery operation for layered TMOs. The substantially distinct evolution of the oxygen-redox activity and reversibility are demonstrated to stem from the different cation-migration mechanisms during the dynamic de/intercalation process. We show that the π stabilization on the oxygen oxidation initially aids in the reversibility of the oxygen redox and is predominant in the absence of cation migrations; however, the π-interacting oxygen is gradually replaced by σ-interacting oxygen that triggers the formation of O–O dimers and structural destabilization as cycling progresses. More importantly, it is revealed that the distinct cation-migration paths available in the layered TMOs govern the conversion kinetics from π to σ interactions. These findings constitute a step forward in unravelling the correlation between the local structural evolution and the reversibility of oxygen electrochemistry and provide guidance for further development of oxygen-redox layered electrode materials.-
dc.language영어-
dc.publisherNature Research-
dc.titleCoupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000770195000002-
dc.identifier.scopusid2-s2.0-85126482385-
dc.identifier.rimsid77932-
dc.contributor.affiliatedAuthorDonggun Eum-
dc.contributor.affiliatedAuthorByunghoon Kim-
dc.contributor.affiliatedAuthorMyeong Hwan Lee-
dc.contributor.affiliatedAuthorKyungbae Oh-
dc.contributor.affiliatedAuthorDo-Hoon Kim-
dc.contributor.affiliatedAuthorKisuk Kang-
dc.identifier.doi10.1038/s41563-022-01209-1-
dc.identifier.bibliographicCitationNature Materials, v.21, no.6, pp.664 - 672-
dc.relation.isPartOfNature Materials-
dc.citation.titleNature Materials-
dc.citation.volume21-
dc.citation.number6-
dc.citation.startPage664-
dc.citation.endPage672-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusANIONIC REDOX-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusO-O-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusORIGIN-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusRAMAN-
dc.subject.keywordPlusMN-
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse