A theoretical framework for oxygen redox chemistry for sustainable batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Byunghoon Kim | - |
dc.contributor.author | Song, Jun-Hyuk | - |
dc.contributor.author | Eum, Donggun | - |
dc.contributor.author | Yu, Seungju | - |
dc.contributor.author | Oh, Kyungbae | - |
dc.contributor.author | Lee, Myeong Hwan | - |
dc.contributor.author | Jang, Ho-Young | - |
dc.contributor.author | Kisuk Kang | - |
dc.date.accessioned | 2023-01-27T00:47:10Z | - |
dc.date.available | 2023-01-27T00:47:10Z | - |
dc.date.created | 2022-06-13 | - |
dc.date.issued | 2022-08 | - |
dc.identifier.issn | 2398-9629 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12894 | - |
dc.description.abstract | © 2022, The Author(s), under exclusive licence to Springer Nature Limited.Lithium-rich layered oxides have emerged as a new model for designing the next generation of cathode materials for batteries to assist the transition to a greener energy system. The unique oxygen redox mechanism of such cathodes enables extra energy storage capacity beyond the contribution from merely transition metal ions; however, their practical application is hindered by the destabilizing structural changes during operation. Here we present a theoretical framework for the triptych of structural disorder, bond covalency and oxygen redox chemistry that applies to a wide range of layered oxides. It is revealed that structural disorder stabilizes the oxygen redox by promoting the formation of oxygen covalent bonds in favour of electrochemical reversibility. Oxygen dimers are found to move freely within the lattice structure and serve as a key catalyst of the poor structural resilience. Such fundamental understanding provides fresh insights that could inform strategies to mitigate the limitations of anionic redox cathodes, moving us a step closer to tapping into their enormous potential. | - |
dc.language | 영어 | - |
dc.publisher | Nature Research | - |
dc.title | A theoretical framework for oxygen redox chemistry for sustainable batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000802862200002 | - |
dc.identifier.scopusid | 2-s2.0-85131042878 | - |
dc.identifier.rimsid | 78311 | - |
dc.contributor.affiliatedAuthor | Byunghoon Kim | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1038/s41893-022-00890-z | - |
dc.identifier.bibliographicCitation | Nature Sustainability, v.5, no.8, pp.708 - 716 | - |
dc.relation.isPartOf | Nature Sustainability | - |
dc.citation.title | Nature Sustainability | - |
dc.citation.volume | 5 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 708 | - |
dc.citation.endPage | 716 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | ssci | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.relation.journalWebOfScienceCategory | Environmental Studies | - |
dc.subject.keywordPlus | LI-ION | - |
dc.subject.keywordPlus | LAYERED OXIDES | - |
dc.subject.keywordPlus | VOLTAGE HYSTERESIS | - |
dc.subject.keywordPlus | CATHODE MATERIAL | - |
dc.subject.keywordPlus | CAPACITY | - |
dc.subject.keywordPlus | ORIGIN | - |
dc.subject.keywordPlus | VISUALIZATION | - |
dc.subject.keywordPlus | COMPLEXES | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | LATTICE | - |