A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Young-Uk Park | - |
dc.contributor.author | Dong-Hwa Seo | - |
dc.contributor.author | Hyung-Soon Kwon | - |
dc.contributor.author | Kim, BK | - |
dc.contributor.author | Kim, JS | - |
dc.contributor.author | Kim, HY | - |
dc.contributor.author | Inkyung Kim | - |
dc.contributor.author | Yoo, HI | - |
dc.contributor.author | Kisuk Kang | - |
dc.date.available | 2015-04-20T06:46:50Z | - |
dc.date.created | 2014-09-11 | - |
dc.date.issued | 2013-09 | - |
dc.identifier.issn | 0002-7863 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1268 | - |
dc.description.abstract | Large-scale electric energy storage is a key enabler for the use of renewable energy. Recently, the room-temperature Na-ion battery has been rehighlighted as an alternative low-cost technology for this application. However, significant challenges such as energy density and long-term stability must be addressed. Herein, we introduce a novel cathode material, Na 1.5VPO4.8F0.7, for Na-ion batteries. This new material provides an energy density of ∼600 Wh kg-1, the highest value among cathodes, originating from both the multielectron redox reaction (1.2 e- per formula unit) and the high potential (∼3.8 V vs Na+/Na) of the tailored vanadium redox couple (V3.8+/ V5+). Furthermore, an outstanding cycle life (∼95% capacity retention for 100 cycles and ∼84% for extended 500 cycles) could be achieved, which we attribute to the small volume change (2.9%) upon cycling, the smallest volume change among known Na intercalation cathodes. The open crystal framework with two-dimensional Na diffusional pathways leads to low activation barriers for Na diffusion, enabling excellent rate capability. We believe that this new material can bring the low-cost room-temperature Na-ion battery a step closer to a sustainable large-scale energy storage system. © 2013 American Chemical Society. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | Capacity retention | - |
dc.subject | Energy storage systems | - |
dc.subject | Intercalation cathodes | - |
dc.subject | Long term stability | - |
dc.subject | Low-cost technology | - |
dc.subject | Multi-electron redoxes | - |
dc.subject | Rate capabilities | - |
dc.subject | Use of renewable energies | - |
dc.subject | Energy storage | - |
dc.subject | Ions | - |
dc.subject | Lithium compounds | - |
dc.subject | Redox reactions | - |
dc.subject | Cathodes | - |
dc.subject | sodium ion | - |
dc.subject | vanadium | - |
dc.subject | article | - |
dc.subject | biogeochemical cycling | - |
dc.subject | crystal structure | - |
dc.subject | density functional theory | - |
dc.subject | electric battery | - |
dc.subject | electric conductivity | - |
dc.subject | electricity | - |
dc.subject | electrochemical impedance spectroscopy | - |
dc.subject | electron spin resonance | - |
dc.subject | electron transport | - |
dc.subject | miscibility | - |
dc.subject | molecular stability | - |
dc.subject | nuclear magnetic resonance spectroscopy | - |
dc.subject | oxidation reduction potential | - |
dc.subject | oxidation reduction reaction | - |
dc.subject | renewable energy | - |
dc.subject | room temperature | - |
dc.subject | scanning electron microscopy | - |
dc.subject | transmission electron microscopy | - |
dc.subject | X ray powder diffraction | - |
dc.title | A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000330163000040 | - |
dc.identifier.scopusid | 2-s2.0-84884476433 | - |
dc.identifier.rimsid | 53130 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Young-Uk Park | - |
dc.contributor.affiliatedAuthor | Inkyung Kim | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1021/ja406016j | - |
dc.identifier.bibliographicCitation | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.135, no.37, pp.13870 - 13878 | - |
dc.citation.title | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY | - |
dc.citation.volume | 135 | - |
dc.citation.number | 37 | - |
dc.citation.startPage | 13870 | - |
dc.citation.endPage | 13878 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 207 | - |
dc.description.scptc | 207 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | SODIUM RECHARGEABLE BATTERIES | - |
dc.subject.keywordPlus | ELECTROCHEMICAL PROPERTIES | - |
dc.subject.keywordPlus | ELECTRODE PERFORMANCE | - |
dc.subject.keywordPlus | LITHIUM BATTERIES | - |
dc.subject.keywordPlus | STORAGE MECHANISM | - |
dc.subject.keywordPlus | FLUOROPHOSPHATE | - |
dc.subject.keywordPlus | PYROPHOSPHATE | - |
dc.subject.keywordPlus | CONDUCTIVITY | - |
dc.subject.keywordPlus | NA3V2(PO4)3 | - |
dc.subject.keywordPlus | DIFFRACTION | - |