Reconfiguring Sodium Intercalation Process of TiS2 Electrode for Sodium-Ion Batteries by a Partial Solvent Cointercalation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Jooha | - |
dc.contributor.author | Kim, Sung Joo | - |
dc.contributor.author | Lim, Kyungmi | - |
dc.contributor.author | Cho, Jiung | - |
dc.contributor.author | Kisuk Kang | - |
dc.date.accessioned | 2023-01-26T02:36:11Z | - |
dc.date.available | 2023-01-26T02:36:11Z | - |
dc.date.created | 2022-12-08 | - |
dc.date.issued | 2022-10 | - |
dc.identifier.issn | 2380-8195 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12621 | - |
dc.description.abstract | Titanium disulfide (TiS2), a first-generation cathode in lithium batteries, has also attracted a broad interest as a sodium-ion battery electrode due to fast sodium intercalation kinetics and large theoretical capacity. However, the reversibility of sodium de/ intercalation is far inferior to that of lithium because of the unfavorable intermediate phase formation. Herein, we demonstrate that reconfiguring sodium intercalation via partial solvent cointercalation alters the phasetransition paths for the entire reactions of NaxTiS2 (0 < x < 1), detouring the formation of the unfavorable intermediates. Additionally, it unexpectedly results in a remarkable enhancement of sodium intercalation reversibility, boosting the cycle stability (1000 cycles) accompanying high power capability (10C rate). Comparative investigations reveal that the sodium intercalation in ether-based electrolyte involves a preintercalation of solvent molecules, which is subsequently dissimilar to the bare sodium intercalation in conventional electrolytes. Rediscovery of the intercalation behavior of TiS2 offers a new insight in revisiting the reversibility and kinetics of the commonly known electrodes for batteries. | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Reconfiguring Sodium Intercalation Process of TiS2 Electrode for Sodium-Ion Batteries by a Partial Solvent Cointercalation | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000870018400001 | - |
dc.identifier.scopusid | 2-s2.0-85139549364 | - |
dc.identifier.rimsid | 79417 | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1021/acsenergylett.2c01838 | - |
dc.identifier.bibliographicCitation | ACS ENERGY LETTERS, v.7, no.10, pp.3718 - 3726 | - |
dc.relation.isPartOf | ACS ENERGY LETTERS | - |
dc.citation.title | ACS ENERGY LETTERS | - |
dc.citation.volume | 7 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 3718 | - |
dc.citation.endPage | 3726 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Electrochemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | CATHODE | - |
dc.subject.keywordPlus | STORAGE | - |
dc.subject.keywordPlus | ANODE | - |
dc.subject.keywordAuthor | CATHODE | - |
dc.subject.keywordAuthor | STORAGE | - |
dc.subject.keywordAuthor | ANODE | - |