BROWSE

Related Scientist

cinap's photo.

cinap
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

Cu–Bi–Se-based pavonite homologue: a promising thermoelectric material with low lattice thermal conductivity

DC Field Value Language
dc.contributor.authorJung Young Cho-
dc.contributor.authorHyeona Mun-
dc.contributor.authorByungki Ryu-
dc.contributor.authorSang Il Kim-
dc.contributor.authorSungwoo Hwang-
dc.contributor.authorJong Wook Roh-
dc.contributor.authorDae Jin Yang-
dc.contributor.authorWeon Ho Shin-
dc.contributor.authorSang Mock Lee-
dc.contributor.authorSoon-Mok Cho-
dc.contributor.authorDae Joon Kang-
dc.contributor.authorSung Wng Kim-
dc.contributor.authorKyu Hyoung Lee-
dc.date.available2015-04-20T06:43:53Z-
dc.date.created2014-08-11-
dc.date.issued2013-09-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/1254-
dc.description.abstractPavonite homologues, Cux+yBi5-ySe8 (1.2 <= x <= 1.5, 0.1 <= y <= 0.4), in a polycrystalline bulk form have been synthesized using a conventional solid state sintering technique. Their thermal and electronic transport properties were evaluated for mid-temperature thermoelectric power generation applications. Structural complexity, based on unique substitutional and interstitial Cu atoms in the structure, makes this system attractive as an intrinsic low thermal conductivity material; also the band structure calculations revealed that interstitial Cu atoms generate n-type carrier conduction. Room temperature lattice thermal conductivities ranging between 0.41 W m(-1) K-1 and 0.55 W m(-1) K-1 were found for Cux+yBi5-ySe8; these values are comparable to those of the state-of-the-art low lattice thermal conductivity systems. These extremely low thermal conductivities combined with the power factors result in the highest ZT = 0.27 at 560 K for Cu1.9Bi4.6Se8.-
dc.description.uri1-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRYROYAL SOC CHEMISTRY-
dc.subjectAUGMENTED-WAVE METHOD-
dc.subjectPOWER-GENERATION-
dc.subjectPERFORMANCE-
dc.subjectALLOYS-
dc.subjectSEMICONDUCTOR-
dc.subjectZN4SB3-
dc.titleCu–Bi–Se-based pavonite homologue: a promising thermoelectric material with low lattice thermal conductivity-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000322792900029-
dc.identifier.scopusid2-s2.0-84881452679-
dc.identifier.rimsid408ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorDae Joon Kang-
dc.contributor.affiliatedAuthorSung Wng Kim-
dc.identifier.doi10.1039/c3ta11457k-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.1, no.34, pp.9768 - 9774-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume1-
dc.citation.number34-
dc.citation.startPage9768-
dc.citation.endPage9774-
dc.date.scptcdate2018-10-01-
dc.description.wostc7-
dc.description.scptc7-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusAUGMENTED-WAVE METHOD-
dc.subject.keywordPlusPOWER-GENERATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordPlusSEMICONDUCTOR-
dc.subject.keywordPlusZN4SB3-
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
329_JMCA_Cu-Bi-Se.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse