Enhanced selective photocatalytic oxidation of a bio-derived platform chemical with vacancy-induced core-shell anatase TiO2 nanoparticles
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Woo-Sung Jang | - |
dc.contributor.author | Pham, Vy Ngoc | - |
dc.contributor.author | Yang, Sang-Hyeok | - |
dc.contributor.author | Baik, Jaeyoon | - |
dc.contributor.author | Lee, Hangil | - |
dc.contributor.author | Young-Min Kim | - |
dc.date.accessioned | 2023-01-26T02:18:00Z | - |
dc.date.available | 2023-01-26T02:18:00Z | - |
dc.date.created | 2022-11-29 | - |
dc.date.issued | 2023-03 | - |
dc.identifier.issn | 0926-3373 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12436 | - |
dc.description.abstract | © 2022 Elsevier B.V. All rights reserved. 2,5-Furandicarboxylic acid (FDCA), a biodegradable alternative to fossil fuels, can be obtained via the catalytic oxidation of 2,5-hydroxymethlyfurfural (HMF), which is sourced from biomass. Anatase TiO2 nanoparticles (NPs) with oxygen vacancies (Vo) effectively promote the oxidation process under ultraviolet/visible-light illumination. The conversion process is accelerated by introducing anatase TiO2 NPs with a Vo-densified shell and stoichiometric core, which is achieved by a simple base treatment after synthesis. The defective shell acts as an electron-rich catalytic platform to facilitate HMF oxidation. Base-treated NPs measuring less than 20 nm yield ∼40% conversion to FDCA via HMF oxidation at room temperature in water. The photocatalytic activity is achieved at a 580% higher rate than with the corresponding untreated TiO2. Spectroscopic characterizations clearly visualize the densified layer of Vo enclosing the surface of the high-performance TiO2 NPs. Our results provide new insights into the optimal defect engineering of oxide-based catalysts for efficient biomass conversions. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Enhanced selective photocatalytic oxidation of a bio-derived platform chemical with vacancy-induced core-shell anatase TiO2 nanoparticles | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000883916900004 | - |
dc.identifier.scopusid | 2-s2.0-85141302153 | - |
dc.identifier.rimsid | 79243 | - |
dc.contributor.affiliatedAuthor | Woo-Sung Jang | - |
dc.contributor.affiliatedAuthor | Young-Min Kim | - |
dc.identifier.doi | 10.1016/j.apcatb.2022.122140 | - |
dc.identifier.bibliographicCitation | Applied Catalysis B: Environmental, v.322 | - |
dc.relation.isPartOf | Applied Catalysis B: Environmental | - |
dc.citation.title | Applied Catalysis B: Environmental | - |
dc.citation.volume | 322 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.subject.keywordPlus | SURFACE/BULK OXYGEN VACANCIES | - |
dc.subject.keywordPlus | 2,5-FURANDICARBOXYLIC ACID | - |
dc.subject.keywordPlus | CATALYSTS | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordPlus | DEFECTS | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordPlus | SIZE | - |
dc.subject.keywordAuthor | 2,5-hydroxymethlyfurfural (HMF) | - |
dc.subject.keywordAuthor | Core-shell structure | - |
dc.subject.keywordAuthor | Oxygen vacancy | - |
dc.subject.keywordAuthor | Photocatalytic oxidation | - |
dc.subject.keywordAuthor | TiO2 nanoparticles | - |