Two-Dimensional Vanadium-Doped ZnO Nanosheet-Based Flexible Direct Current Nanogenerator
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Manoj Kumar Gupta | - |
dc.contributor.author | Lee, JH | - |
dc.contributor.author | Lee, KY | - |
dc.contributor.author | Sang-Woo Kim | - |
dc.date.available | 2015-04-20T06:37:55Z | - |
dc.date.created | 2014-09-12 | - |
dc.date.issued | 2013-10 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1227 | - |
dc.description.abstract | Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm-2 was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4-], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS. © 2013 American Chemical Society. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | two-dimensional nanosheet . vanadium doping . ferroelectricity . piezoelectric nanogenerator . energy harvesting . | - |
dc.title | Two-Dimensional Vanadium-Doped ZnO Nanosheet-Based Flexible Direct Current Nanogenerator | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000326209100065 | - |
dc.identifier.scopusid | 2-s2.0-84886995392 | - |
dc.identifier.rimsid | 53115 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Sang-Woo Kim | - |
dc.identifier.doi | 10.1021/nn403428m | - |
dc.identifier.bibliographicCitation | ACS NANO, v.7, no.10, pp.8932 - 8939 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 7 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 8932 | - |
dc.citation.endPage | 8939 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 88 | - |
dc.description.scptc | 88 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | PIEZOELECTRIC NANOGENERATORS | - |
dc.subject.keywordPlus | DEPOSITION GROWTH | - |
dc.subject.keywordPlus | GRAPHENE | - |
dc.subject.keywordPlus | NANOWIRE | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordPlus | NANOSTRUCTURES | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | OUTPUT | - |
dc.subject.keywordPlus | LIGHT | - |
dc.subject.keywordPlus | ACID | - |
dc.subject.keywordAuthor | two-dimensional nanosheet | - |
dc.subject.keywordAuthor | vanadium doping | - |
dc.subject.keywordAuthor | ferroelectricity | - |
dc.subject.keywordAuthor | piezoelectric nanogenerator | - |
dc.subject.keywordAuthor | energy harvesting | - |
dc.subject.keywordAuthor | direct current | - |