BROWSE

Related Scientist

Oh, Yong Geun's photo.

Oh, Yong Geun
기하학 수리물리 연구단
more info

ITEM VIEW & DOWNLOAD

Construction of a linear K-system in Hamiltonian Floer theory

Cited 0 time in webofscience Cited 0 time in scopus
99 Viewed 0 Downloaded
Title
Construction of a linear K-system in Hamiltonian Floer theory
Author(s)
Fukaya, Kenji; Yong-Geun Oh; Ohta, Hiroshi; Ono, Kaoru
Publication Date
2022-04
Journal
Journal of Fixed Point Theory and Applications, v.24, no.2
Publisher
Birkhauser
Abstract
© 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.The notion of linear K-system was introduced by the present authors as an abstract model arising from the structure of compactified moduli spaces of solutions to Floer’s equation in the book (Fukaya et al. in Springer monographs in mathematics, Springer, Berlin, 2020). The purpose of the present article is to provide a geometric realization of the linear K-system associated with solutions to Floer’s equation in the Morse–Bott setting. Immediate consequences [when combined with the abstract theory from Fukaya et al. (Springer monographs in mathematics, Springer, Berlin, 2020)] are the construction of Floer cohomology for periodic Hamiltonian systems on general compact symplectic manifolds without any restriction, and the construction of an isomorphism over the Novikov ring between the Floer cohomology and the singular cohomology of the underlying symplectic manifold. The present article utilizes various analytical results on pseudoholomorphic curves established in our earlier papers and books. However, the paper itself is geometric in nature, and does not presume much prior knowledge of Kuranishi structures and their construction but assumes only the elementary part thereof, and results from Fukaya et al. (Surv Differ Geom 22:133–190, 2018) and Fukaya et al. (Exponential decay estimate and smoothness of the moduli space of pseudoholomorphic curves) on their construction, and the standard knowledge on Hamiltonian Floer theory. We explain the general procedure of the construction of a linear K-system by explaining in detail the inductive steps of ensuring the compatibility conditions for the system of Kuranishi structures leading to a linear K-system for the case of Hamiltonian Floer theory.
URI
https://pr.ibs.re.kr/handle/8788114/12213
DOI
10.1007/s11784-022-00960-x
ISSN
1661-7738
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse