BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries

Cited 0 time in webofscience Cited 0 time in scopus
256 Viewed 0 Downloaded
Title
Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries
Author(s)
Yoon, Kyungho; Lee, Sunyoung; Oh, Kyungbae; Kisuk Kang
Publication Date
2022-01
Journal
Advanced Materials, v.34, no.4
Publisher
John Wiley and Sons Inc
Abstract
© 2021 Wiley-VCH GmbHRemarkable improvement of the ionic conductivity of inorganic solid electrolytes (SEs) exceeding 10 mS cm−1 at room temperature has opened up the opportunities to realize the commercialization of solid-state batteries (SSBs). The transition to the intrinsically inflammable SEs also promises that SSBs would successfully utilize lithium metal anode thus achieving the high-energy-density lithium metal batteries without the risk of a safety hazard. However, the practical operation of solid-state lithium metal batteries (SSLMBs) still faces the challenges of the poor cycle stability and the low energy efficiency, which are coupled with the interface stability and even with the dendrite growth of lithium metal. This article overviews current understandings regarding the underlying origins of the issues in employing the lithium metal anode in SSLMBs from the five main standpoints: i) the chemical/electrochemical interfacial stability, ii) the microscopic evolution of interfacial morphology, iii) the intrinsic diffusivity of lithium atom/vacancy at the interface, iv) imperfections (defect/pores), and v) non-negligible electronic conductivity of SEs. The discussions are followed on the state-of-the-art efforts and strategies to overcome these respective challenges. Finally, the authors provide their perspectives for the future research directions toward achieving the commercial level of high-energy SSLMBs.
URI
https://pr.ibs.re.kr/handle/8788114/12073
DOI
10.1002/adma.202104666
ISSN
0935-9648
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse