Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ashwani Kumar | - |
dc.contributor.author | Xinghui Liu | - |
dc.contributor.author | Jinsun Lee | - |
dc.contributor.author | Debnath, Bharati | - |
dc.contributor.author | Amol R. Jadhav | - |
dc.contributor.author | Xiaodong Shao | - |
dc.contributor.author | Viet Q. Bui | - |
dc.contributor.author | Yosep Hwang | - |
dc.contributor.author | Yang Liu | - |
dc.contributor.author | Kim, Min Gyu | - |
dc.contributor.author | Hyoyoung Lee | - |
dc.date.accessioned | 2022-06-13T06:37:23Z | - |
dc.date.available | 2022-06-13T06:37:23Z | - |
dc.date.created | 2021-11-29 | - |
dc.date.issued | 2021-12-09 | - |
dc.identifier.issn | 1754-5692 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/11872 | - |
dc.description.abstract | © The Royal Society of Chemistry 2021. Single-atom-catalysts (SACs) have recently gained significant attention in energy conversion/storage applications, while the low-loading amount due to their easy-to-migrate tendency causes a major bottleneck. For energy-saving H-2 generation, replacing the sluggish oxygen evolution reaction with the thermodynamically favorable urea oxidation reaction (UOR) offers great promise, additionally mitigating the issue of urea-rich water contamination. However, the lack of efficient catalysts to overcome the intrinsically slow kinetics limits its scalable applications. Herein, we discover that incorporating tensile-strain on the surface of a Co3O4 (strained-Co3O4; S-Co3O4) support by the liquid N-2-quenching method can significantly inhibit the migration tendency of Rh single-atoms (Rh-SA), thereby stabilizing an similar to 200% higher loading of Rh-SA sites (Rh-SA-S-Co3O4; bulk loading similar to 6.6 wt%/surface loading similar to 11.6 wt%) compared to pristine-Co3O4 (P-Co3O4). Theoretical calculations revealed a significantly increased migration energy barrier of Rh-SA on the S-Co3O4 surface than on P-Co3O4, inhibiting their migration/agglomeration. Surprisingly, Rh-SA-S-Co3O4 exhibited exceptional pH-universal UOR activity, requiring record-low working potentials and surpassing Pt/Rh-C, this was due to superior urea adsorption and stabilization of CO*/NH* intermediates, revealed by DFT simulations. Meanwhile, the assembled urea-electrolyzer delivered 10 mA cm(-2) at only 1.33 V with robust stability in alkaline media. This work provides a general methodology towards high-loading SACs for scalable applications. | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000715382500001 | - |
dc.identifier.scopusid | 2-s2.0-85121273491 | - |
dc.identifier.rimsid | 76759 | - |
dc.contributor.affiliatedAuthor | Ashwani Kumar | - |
dc.contributor.affiliatedAuthor | Xinghui Liu | - |
dc.contributor.affiliatedAuthor | Jinsun Lee | - |
dc.contributor.affiliatedAuthor | Amol R. Jadhav | - |
dc.contributor.affiliatedAuthor | Xiaodong Shao | - |
dc.contributor.affiliatedAuthor | Viet Q. Bui | - |
dc.contributor.affiliatedAuthor | Yosep Hwang | - |
dc.contributor.affiliatedAuthor | Yang Liu | - |
dc.contributor.affiliatedAuthor | Hyoyoung Lee | - |
dc.identifier.doi | 10.1039/d1ee02603h | - |
dc.identifier.bibliographicCitation | ENERGY &ENVIRONMENTAL SCIENCE, v.14, no.12, pp.6494 - 9505 | - |
dc.relation.isPartOf | ENERGY &ENVIRONMENTAL SCIENCE | - |
dc.citation.title | ENERGY &ENVIRONMENTAL SCIENCE | - |
dc.citation.volume | 14 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 6494 | - |
dc.citation.endPage | 9505 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordPlus | OXYGEN | - |
dc.subject.keywordPlus | CU | - |
dc.subject.keywordPlus | HYDROGEN EVOLUTION | - |
dc.subject.keywordPlus | BIFUNCTIONAL ELECTROCATALYSTS | - |
dc.subject.keywordPlus | HYDROXIDE NANOSHEETS | - |
dc.subject.keywordPlus | EFFICIENT | - |