Drift-dominant exciton funneling and trion conversion in 2D semiconductors on the nanogap
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Hyeongwoo | - |
dc.contributor.author | Koo, Yeonjeong | - |
dc.contributor.author | Choi, Jinseong | - |
dc.contributor.author | Kumar, Shailabh | - |
dc.contributor.author | Lee, Hyoung-Taek | - |
dc.contributor.author | Ji, Gangseon | - |
dc.contributor.author | Soo Ho Choi | - |
dc.contributor.author | Kang, Mingu | - |
dc.contributor.author | Ki Kang Kim | - |
dc.contributor.author | Park, Hyeong-Ryeol | - |
dc.contributor.author | Choo, Hyuck | - |
dc.contributor.author | Park, Kyoung-Duck | - |
dc.date.accessioned | 2022-05-25T04:50:38Z | - |
dc.date.available | 2022-05-25T04:50:38Z | - |
dc.date.created | 2022-02-21 | - |
dc.date.issued | 2022-02 | - |
dc.identifier.issn | 2375-2548 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/11601 | - |
dc.description.abstract | © 2022 American Association for the Advancement of Science. Understanding and controlling the nanoscale transport of excitonic quasiparticles in atomically thin two-dimensional (2D) semiconductors are crucial to produce highly efficient nano-excitonic devices. Here, we present a nanogap device to selectively confine excitons or trions of 2D transition metal dichalcogenides at the nanoscale, facilitated by the drift-dominant exciton funneling into the strain-induced local spot. We investigate the spatiospectral characteristics of the funneled excitons in a WSe2 monolayer (ML) and converted trions in a MoS2 ML using hyperspectral tip-enhanced photoluminescence imaging with <15-nm spatial resolution. In addition, we dynamically control the exciton funneling and trion conversion rate by the gigapascal-scale tip pressure engineering. Through a drift-diffusion model, we confirm an exciton funneling efficiency of ∼25% with a significantly low strain threshold (∼0.1%), which sufficiently exceeds the efficiency of ∼3% in previous studies. This work provides a previously unexplored strategy to facilitate efficient exciton transport and trion conversion of 2D semiconductor devices. | - |
dc.language | 영어 | - |
dc.publisher | NLM (Medline) | - |
dc.title | Drift-dominant exciton funneling and trion conversion in 2D semiconductors on the nanogap | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000799992000019 | - |
dc.identifier.scopusid | 2-s2.0-85124173596 | - |
dc.identifier.rimsid | 77739 | - |
dc.contributor.affiliatedAuthor | Soo Ho Choi | - |
dc.contributor.affiliatedAuthor | Ki Kang Kim | - |
dc.identifier.doi | 10.1126/sciadv.abm5236 | - |
dc.identifier.bibliographicCitation | Science advances, v.8, no.5 | - |
dc.relation.isPartOf | Science advances | - |
dc.citation.title | Science advances | - |
dc.citation.volume | 8 | - |
dc.citation.number | 5 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |