Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shim, Ka Young | - |
dc.contributor.author | Chung, Sung Won | - |
dc.contributor.author | Jeong, Jae Hak | - |
dc.contributor.author | Hwang, Inpyeong | - |
dc.contributor.author | Park, Chul-Kee | - |
dc.contributor.author | Kim, Tae Min | - |
dc.contributor.author | Park, Sung-Hye | - |
dc.contributor.author | Won, Jae Kyung | - |
dc.contributor.author | Lee, Joo Ho | - |
dc.contributor.author | Lee, Soon-Tae | - |
dc.contributor.author | Yoo, Roh-Eul | - |
dc.contributor.author | Kang, Koung Mi | - |
dc.contributor.author | Yun, Tae Jin | - |
dc.contributor.author | Kim, Ji-Hoon | - |
dc.contributor.author | Sohn, Chul-Ho | - |
dc.contributor.author | Choi, Kyu Sung | - |
dc.contributor.author | Seung Hong Choi | - |
dc.date.accessioned | 2022-01-04T01:30:18Z | - |
dc.date.available | 2022-01-04T01:30:18Z | - |
dc.date.created | 2021-05-27 | - |
dc.date.issued | 2021-05-11 | - |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10968 | - |
dc.description.abstract | © 2021, The Author(s).Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903–1.000) for local recurrence; 0.864 (0.726–0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or “radiomic risk score”, increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival. | - |
dc.language | 영어 | - |
dc.publisher | Nature Research | - |
dc.title | Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000658810700008 | - |
dc.identifier.scopusid | 2-s2.0-85105768951 | - |
dc.identifier.rimsid | 75729 | - |
dc.contributor.affiliatedAuthor | Seung Hong Choi | - |
dc.identifier.doi | 10.1038/s41598-021-89218-z | - |
dc.identifier.bibliographicCitation | SCIENTIFIC REPORTS, v.11, no.1 | - |
dc.relation.isPartOf | SCIENTIFIC REPORTS | - |
dc.citation.title | SCIENTIFIC REPORTS | - |
dc.citation.volume | 11 | - |
dc.citation.number | 1 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.subject.keywordPlus | MGMT PROMOTER METHYLATION | - |
dc.subject.keywordPlus | SIGNAL-INTENSITY LESIONS | - |
dc.subject.keywordPlus | CEREBRAL BLOOD-VOLUME | - |
dc.subject.keywordPlus | TUMOR HETEROGENEITY | - |
dc.subject.keywordPlus | STANDARD TREATMENT | - |
dc.subject.keywordPlus | MALIGNANT GLIOMAS | - |
dc.subject.keywordPlus | TRUE PROGRESSION | - |
dc.subject.keywordPlus | TEXTURE ANALYSIS | - |
dc.subject.keywordPlus | BRAIN-BARRIER | - |
dc.subject.keywordPlus | SURVIVAL | - |