BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Multiparametric magnetic resonance imaging features of a canine glioblastoma model

Cited 0 time in webofscience Cited 0 time in scopus
355 Viewed 0 Downloaded
Title
Multiparametric magnetic resonance imaging features of a canine glioblastoma model
Author(s)
Lee, Seunghyun; Seung Hong Choi; Cho, Hye Rim; Koh, Jaemoon; Park, Chul-Kee; Ichikawa, Tomotsugu
Publication Date
2021-07-09
Journal
PLOS ONE, v.16, no.7
Publisher
PUBLIC LIBRARY SCIENCE
Abstract
Purpose To assess glioblastoma multiforme (GBM) formation with similar imaging characteristics to human GBM using multiparametric magnetic resonance imaging (MRI) in an orthotopic xenograft canine GBM model. Materials and methods The canine GBM cell line J3T1 was subcutaneously injected into 6-week-old female BALB/c nude mice to obtain tumour fragments. Tumour fragments were implanted into adult male mongrel dog brains through surgery. Multiparametric MRI was performed with conventional MRI, diffusion-weighted imaging, and dynamic susceptibility contrast-enhanced perfusion-weighted imaging at one week and two weeks after surgery in a total of 15 surgical success cases. The presence of tumour cells, the necrotic area fraction, and the microvessel density (MVD) of the tumour on the histologic specimen were assessed. Tumour volume, diffusion, and perfusion parameters were compared at each time point using Wilcoxon signed-rank tests, and the differences between tumour and normal parenchyma were compared using unpaired t-tests. Spearman correlation analysis was performed between the imaging and histologic parameters. Results All animals showed a peripheral enhancing lesion on MRI and confirmed the presence of a tumour through histologic analysis (92.3%). The normalized perfusion values did not show significant decreases through at least 2 weeks after the surgery (P > 0.05). There was greater cerebral blood volume and flow in the GBM than in the normal-appearing white matter (1.46 +/- 0.25 vs. 1.13 +/- 0.16 and 1.30 +/- 0.22 vs. 1.02 +/- 0.14; P < 0.001 and P < 0.001, respectively). The MVD in the histologic specimens was correlated with the cerebral blood volume in the GBM tissue (r = 0.850, P = 0.004). Conclusion Our results suggest that the canine GBM model showed perfusion imaging characteristics similar to those of humans, and it might have potential as a model to assess novel technical developments for GBM treatment.
URI
https://pr.ibs.re.kr/handle/8788114/10806
DOI
10.1371/journal.pone.0254448
ISSN
1932-6203
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse