BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries

DC Field Value Language
dc.contributor.authorXu, Zheng-Long-
dc.contributor.authorPark, Jooha-
dc.contributor.authorWang, Jian-
dc.contributor.authorMoon, Hyunseok-
dc.contributor.authorYoon, Gabin-
dc.contributor.authorLim, Jongwoo-
dc.contributor.authorKo, Yoon-Joo-
dc.contributor.authorCho, Sung-Pyo-
dc.contributor.authorLee, Sang-Young-
dc.contributor.authorKisuk Kang-
dc.date.accessioned2021-12-08T06:30:32Z-
dc.date.available2021-12-08T06:30:32Z-
dc.date.created2021-07-07-
dc.date.issued2021-06-07-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/10800-
dc.description.abstract© 2021, The Author(s).Rechargeable calcium batteries have attracted increasing attention as promising multivalent ion battery systems due to the high abundance of calcium. However, the development has been hampered by the lack of suitable cathodes to accommodate the large and divalent Ca2+ ions at a high redox potential with sufficiently fast ionic conduction. Herein, we report a new intercalation host which presents 500 cycles with a capacity retention of 90% and a remarkable power capability at ~3.2 V (vs. Ca/Ca2+) in a calcium battery. The cathode material derived from Na0.5VPO4.8F0.7 is demonstrated to reversibly accommodate a large amount of Ca2+ ions, forming a series of CaxNa0.5VPO4.8F0.7 (0 < x < 0.5) phases without any noticeable structural degradation. The robust framework enables one of the smallest volume changes (1.4%) and the lowest diffusion barriers for Ca2+ among the cathodes reported to date, offering the basis for the outstanding cycle life and power capability.-
dc.language영어-
dc.publisherNature Publishing Group-
dc.titleA new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000687325100045-
dc.identifier.scopusid2-s2.0-85107580239-
dc.identifier.rimsid75967-
dc.contributor.affiliatedAuthorKisuk Kang-
dc.identifier.doi10.1038/s41467-021-23703-x-
dc.identifier.bibliographicCitationNature Communications, v.12, no.1-
dc.relation.isPartOfNature Communications-
dc.citation.titleNature Communications-
dc.citation.volume12-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusNA-ION BATTERY-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusMAGNESIUM-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusQUEST-
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse