BROWSE

Related Scientist

CCES's photo.

CCES
강상관계 물질 연구단
more info

ITEM VIEW & DOWNLOAD

In situ investigation of conducting interface formation in LaAlO3/SrTiO3 heterostructure

Cited 0 time in webofscience Cited 0 time in scopus
15 Viewed 0 Downloaded
Title
In situ investigation of conducting interface formation in LaAlO3/SrTiO3 heterostructure
Author(s)
Hyang Keun Yoo; Moreschini, Luca; Bostwick, Aaron; Walter, Andrew L.; Tae Won Noh; Rotenberg, Eli; Chang, Young Jun
Publication Date
2021-10
Journal
Current Applied Physics, v.30, pp.53 - 57
Publisher
Elsevier B.V.
Abstract
© 2021 Korean Physical SocietyThe high-mobility conducting interface (CI) between LaAlO3 (LAO) and SrTiO3 (STO) has revealed many fascinating phenomena, including exotic magnetism and superconductivity. But, the formation mechanism of the CI has not been conclusively explained. Here, using in situ angle-resolved photoemission spectroscopy, we elucidated the mechanisms for the CI formation. In as-grown samples, we observed a built-in potential (Vbi) proportional to the polar LAO thickness starting from the first unit cell (UC) with CI formation appearing above 3 UCs. However, we found that the Vbi is removed by synchrotron ultraviolet (UV)-irradiation; The built-in potential is recovered by oxygen gas (O2(g))-exposure. Furthermore, after UV-irradiation, the CI appears even below 3UC of LAO. Our results demonstrate not only the Vbi-driven CI formation in as-grown LAO/STO, but also a new route to control of the interface state by UV lithographic patterning or other surface modification.
URI
https://pr.ibs.re.kr/handle/8788114/10654
DOI
10.1016/j.cap.2021.04.027
ISSN
1567-1739
Appears in Collections:
Center for Correlated Electron Systems(강상관계 물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse