BROWSE

Related Scientist

cinap's photo.

cinap
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

Unusually High Ion Conductivity in Large-Scale Patternable Two-Dimensional MoS2Film

DC Field Value Language
dc.contributor.authorPark, Juhong-
dc.contributor.authorBhoyate, Sanket-
dc.contributor.authorKim, Young-Hoon-
dc.contributor.authorYoung-Min Kim-
dc.contributor.authorYoung Hee Lee-
dc.contributor.authorConlin, Patrick-
dc.contributor.authorCho, Kyeongjae-
dc.contributor.authorChoi, Wonbong-
dc.date.accessioned2021-10-18T07:50:02Z-
dc.date.available2021-10-18T07:50:02Z-
dc.date.created2021-08-26-
dc.date.issued2021-07-27-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/10448-
dc.description.abstract© 2021 American Chemical Society.The advancement of ion transport applications will require the development of functional materials with a high ionic conductivity that is stable, scalable, and micro-patternable. We report unusually high ionic conductivity of Li+, Na+, and K+ in 2D MoS2 nanofilm exceeding 1 S/cm, which is more than 2 orders of magnitude higher when compared to that of conventional solid ionic materials. The high ion conductivity of different cations can be explained by the mitigated activation energy via percolative ion channels in 2H-MoS2, including the 1D ion channel at the grain boundary, as confirmed by modeling and analysis. We obtain field-effect modulation of ion transport with a high on/off ratio. The ion channel is large-scale patternable by conventional lithography, and the thickness can be tuned down to a single atomic layer. The findings yield insight into the ion transport mechanism of van der Waals solid materials and guide the development of future ionic devices owing to the facile and scalable device fabrication with superionic conductivity.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleUnusually High Ion Conductivity in Large-Scale Patternable Two-Dimensional MoS2Film-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000679406500114-
dc.identifier.scopusid2-s2.0-85110945248-
dc.identifier.rimsid76271-
dc.contributor.affiliatedAuthorYoung-Min Kim-
dc.contributor.affiliatedAuthorYoung Hee Lee-
dc.identifier.doi10.1021/acsnano.1c04054-
dc.identifier.bibliographicCitationACS NANO, v.15, no.7, pp.12267 - 12275-
dc.relation.isPartOfACS NANO-
dc.citation.titleACS NANO-
dc.citation.volume15-
dc.citation.number7-
dc.citation.startPage12267-
dc.citation.endPage12275-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusNANOSHEET-
dc.subject.keywordPlusCHANNELS-
dc.subject.keywordPlusTRANSITION-METAL DICHALCOGENIDES-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorpolycrystalline MoS2-
dc.subject.keywordAuthorion transport-
dc.subject.keywordAuthorsuperionic conductance-
dc.subject.keywordAuthorgrain boundary-
dc.subject.keywordAuthorionic gate modulation-
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse