Enhanced electron heat conduction in tas3 1d metal wire
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yi, Hojoon | - |
dc.contributor.author | Bahng, Jaeuk | - |
dc.contributor.author | Sehwan Park | - |
dc.contributor.author | Dang, Dang Xuan | - |
dc.contributor.author | Wonkil Sakong | - |
dc.contributor.author | Kang, Seungsu | - |
dc.contributor.author | Byung-wook Ahn | - |
dc.contributor.author | Kim, Jungwon | - |
dc.contributor.author | Ki Kang Kim | - |
dc.contributor.author | Lim, Jong Tae | - |
dc.contributor.author | Lim, Seong Chu | - |
dc.date.accessioned | 2021-10-18T02:30:22Z | - |
dc.date.available | 2021-10-18T02:30:22Z | - |
dc.date.created | 2021-09-27 | - |
dc.date.issued | 2021-08 | - |
dc.identifier.issn | 1996-1944 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10434 | - |
dc.description.abstract | © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The 1D wire TaS3 exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (Tp), near 210 K. Using the 3! method, we measured the thermal conductivity k of TaS3 as a function of temperature. Electrons dominate the heat conduction of a metal. The Wiedemann–Franz law states that the thermal conductivity k of a metal is proportional to the electrical conductivity σ with a proportional coefficient of L0, known as the Lorenz number—that is, k = sL0T. Our characterization of the thermal conductivity of metallic TaS3 reveals that, at a given temperature T, the thermal conductivity σ is much higher than the value estimated in the Wiedemann–Franz (W-F) law. The thermal conductivity of metallic TaS3 was approximately 12 times larger than predicted by W-F law, implying L = 12L0. This result implies the possibility of an existing heat conduction path that the Sommerfeld theory cannot account for. | - |
dc.language | 영어 | - |
dc.publisher | MDPI Open Access Publishing | - |
dc.title | Enhanced electron heat conduction in tas3 1d metal wire | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000689465200001 | - |
dc.identifier.scopusid | 2-s2.0-85113714686 | - |
dc.identifier.rimsid | 76398 | - |
dc.contributor.affiliatedAuthor | Sehwan Park | - |
dc.contributor.affiliatedAuthor | Wonkil Sakong | - |
dc.contributor.affiliatedAuthor | Byung-wook Ahn | - |
dc.contributor.affiliatedAuthor | Ki Kang Kim | - |
dc.identifier.doi | 10.3390/ma14164477 | - |
dc.identifier.bibliographicCitation | Materials, v.14, no.16 | - |
dc.relation.isPartOf | Materials | - |
dc.citation.title | Materials | - |
dc.citation.volume | 14 | - |
dc.citation.number | 16 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordAuthor | Charge density wave | - |
dc.subject.keywordAuthor | Heat conduction | - |
dc.subject.keywordAuthor | Lorenz number | - |
dc.subject.keywordAuthor | Peierls transition | - |
dc.subject.keywordAuthor | Wiedemann–Franz law | - |