Base Partition for Mixed Families of Finitary and Cofinitary Matroids
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Erde, Joshua | - |
dc.contributor.author | J. PASCAL GOLLIN | - |
dc.contributor.author | Joó, Attila | - |
dc.contributor.author | Knappe, Paul | - |
dc.contributor.author | Pitz, Max | - |
dc.date.accessioned | 2021-07-21T02:30:09Z | - |
dc.date.accessioned | 2021-07-21T02:30:09Z | - |
dc.date.available | 2021-07-21T02:30:09Z | - |
dc.date.available | 2021-07-21T02:30:09Z | - |
dc.date.created | 2020-12-30 | - |
dc.date.issued | 2021-02 | - |
dc.identifier.issn | 0209-9683 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9981 | - |
dc.description.abstract | Let M = (Mi: i ∈ K) be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each Mi, which covers the set E, and also a collection of bases which are pairwise disjoint, then there is a collection of bases which partition E. We also show that the failure of this Cantor-Bernstein-type statement for arbitrary matroid families is consistent relative to the axioms of set theory ZFC. | - |
dc.language | 영어 | - |
dc.publisher | Springer Verlag | - |
dc.title | Base Partition for Mixed Families of Finitary and Cofinitary Matroids | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000814102400001 | - |
dc.identifier.scopusid | 2-s2.0-85096943206 | - |
dc.identifier.rimsid | 74154 | - |
dc.contributor.affiliatedAuthor | J. PASCAL GOLLIN | - |
dc.identifier.doi | 10.1007/s00493-020-4422-4 | - |
dc.identifier.bibliographicCitation | Combinatorica, v.41, no.1, pp.31 - 52 | - |
dc.relation.isPartOf | Combinatorica | - |
dc.citation.title | Combinatorica | - |
dc.citation.volume | 41 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 31 | - |
dc.citation.endPage | 52 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |