Using NMR to Test Molecular Mobility during a Chemical Reaction
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huan Wang | - |
dc.contributor.author | Tian Huang | - |
dc.contributor.author | Steve Granick | - |
dc.date.accessioned | 2021-07-12T05:50:19Z | - |
dc.date.accessioned | 2021-07-12T05:50:19Z | - |
dc.date.available | 2021-07-12T05:50:19Z | - |
dc.date.available | 2021-07-12T05:50:19Z | - |
dc.date.created | 2021-04-21 | - |
dc.date.issued | 2021-03-11 | - |
dc.identifier.issn | 1948-7185 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9932 | - |
dc.description.abstract | We evaluate critically the use of pulsed gradient spin-echo nuclear magnetic resonance to measure molecular mobility during chemical reactions. With raw NMR spectra available in a public depository, we confirm the boosted mobility during the click chemical reaction (Wang et al. Science 2020 369, 537-541) regardless of the order of magnetic field gradient (linearly increasing, linearly decreasing, random sequence). We also confirm boosted mobility for the Diels-Alder chemical reaction. The conceptual advantage of the former chemical system is that a constant reaction rate implies a constant catalyst concentration, whereas that of the latter is the absence of a paramagnetic catalyst, precluding paramagnetism as an objection to the measurements. The data and discussion in this paper show the reliability of experiments when one avoids convection, allows decay of nuclear spin magnetization between successive pulses and recovery of its intensity between gradients, and satisfies quasi-steady state during the time window to acquire each datum. Especially important is to make comparisons on the time scale of the actual chemical reaction kinetics. We discuss possible sources of mistaken conclusions that are desirable to avoid. | - |
dc.language | 영어 | - |
dc.publisher | American Chemical Society | - |
dc.title | Using NMR to Test Molecular Mobility during a Chemical Reaction | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000629172200028 | - |
dc.identifier.scopusid | 2-s2.0-85102905503 | - |
dc.identifier.rimsid | 75377 | - |
dc.contributor.affiliatedAuthor | Huan Wang | - |
dc.contributor.affiliatedAuthor | Tian Huang | - |
dc.contributor.affiliatedAuthor | Steve Granick | - |
dc.identifier.doi | 10.1021/acs.jpclett.1c00066 | - |
dc.identifier.bibliographicCitation | Journal of Physical Chemistry Letters, v.12, no.9, pp.2370 - 2375 | - |
dc.relation.isPartOf | Journal of Physical Chemistry Letters | - |
dc.citation.title | Journal of Physical Chemistry Letters | - |
dc.citation.volume | 12 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 2370 | - |
dc.citation.endPage | 2375 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |