BROWSE

Related Scientist

shin,youjin's photo.

shin,youjin
유전체교정연구단
more info

ITEM VIEW & DOWNLOAD

Analysis of Wild Type LbCpf1 Protein, and PAM Recognition Variants, in a Cellular Context

Cited 0 time in webofscience Cited 0 time in scopus
483 Viewed 0 Downloaded
Title
Analysis of Wild Type LbCpf1 Protein, and PAM Recognition Variants, in a Cellular Context
Author(s)
Ujin Shin; Vincent Brondani
Publication Date
2021-01-07
Journal
FRONTIERS IN GENETICS, v.11
Publisher
FRONTIERS MEDIA SA
Abstract
Nucleases used in genome engineering induce hydrolysis of DNA phosphate backbone in a sequence-specific manner. So far CRISPR-Cas, the RNA-guided nucleases, is the most advanced genome engineering system. The CRISPR nucleases allows recognition of a particular genomic sequence with two distinct molecular interactions: first, by direct interaction between the nuclease and the protospacer-adjacent motif, wherein discrete amino acids interact with DNA base pairs; and second, by hybridization of the guide RNA with the target DNA sequence. Here we report the application of the single strand annealing cellular assay to analyze and quantify nuclease activity of wild type and mutant CRISPR-Cpf1. Using this heterologous marker system based on GFP activity, we observed a comparable PAM recognition selectivity with the NGS analysis. The heterologous marker system has revealed that LbCpf1 is a more specific nuclease than AsCpf1 in a cellular context. We controlled the in vitro activity of the Cpf1 nuclease complexes expressed in mammalian cells and demonstrated that they are responsible of the DNA cleavage at the target site. In addition, we generated and tested LbCpf1 variants with several combinations of mutations at the PAM-recognition positions G532, K538 and Y542. Finally, we showed that the results of the in vitro DNA cleavage assay with the wild type and mutants LbCpf1 corroborate with the selection of 6TG resistant cells associated to the genomic disruption of hprt gene.
URI
https://pr.ibs.re.kr/handle/8788114/9504
DOI
10.3389/fgene.2020.571591
ISSN
1664-8021
Appears in Collections:
Center for Genome Engineering(유전체 교정 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse