Toric Bruhat interval polytopes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eunjeong Lee | - |
dc.contributor.author | Masuda, Mikiya | - |
dc.contributor.author | Park, Seonjeong | - |
dc.date.accessioned | 2021-03-29T05:30:02Z | - |
dc.date.accessioned | 2021-03-29T05:30:02Z | - |
dc.date.available | 2021-03-29T05:30:02Z | - |
dc.date.available | 2021-03-29T05:30:02Z | - |
dc.date.created | 2021-02-23 | - |
dc.date.issued | 2021-04 | - |
dc.identifier.issn | 0097-3165 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9274 | - |
dc.description.abstract | For two elements v and w of the symmetric group S-n with v <= w in Bruhat order, the Bruhat interval polytope Q(v,w) is the convex hull of the points (z(1), ..., z(n)) is an element of R-n with v <= z <= w. It is known that the Bruhat interval polytope Q(v,w) is the moment map image of the Richardson variety X-w-1(v-1). We say that Q(v,w) is toricif the corresponding Richardson variety X-w-1(v-1) is a toric variety. We show that when Q(v,w) is toric, its combinatorial type is determined by the poset structure of the Bruhat interval [v, w] while this is not true unless Q(v,w) is toric. We are concerned with the problem of when Q(v,w) is (combinatorially equivalent to) a cube because Q(v,w) is a cube if and only if X-w-1(v-1) is a smooth toric variety. We show that a Bruhat interval polytope Q(v,w) is a cube if and only if Q(v,w) is toric and the Bruhat interval [v, w] is a Boolean algebra. We also give several sufficient conditions on vand wfor Q(v,w) to be a cube. (C) 2020 Elsevier Inc. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
dc.title | Toric Bruhat interval polytopes | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000605761700007 | - |
dc.identifier.scopusid | 2-s2.0-85098073039 | - |
dc.identifier.rimsid | 74651 | - |
dc.contributor.affiliatedAuthor | Eunjeong Lee | - |
dc.identifier.doi | 10.1016/j.jcta.2020.105387 | - |
dc.identifier.bibliographicCitation | JOURNAL OF COMBINATORIAL THEORY SERIES A, v.179 | - |
dc.relation.isPartOf | JOURNAL OF COMBINATORIAL THEORY SERIES A | - |
dc.citation.title | JOURNAL OF COMBINATORIAL THEORY SERIES A | - |
dc.citation.volume | 179 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | BOTT TOWERS | - |
dc.subject.keywordAuthor | Bruhat interval polytopes | - |
dc.subject.keywordAuthor | Richardson varieties | - |
dc.subject.keywordAuthor | Toric varieties | - |