BROWSE

Related Scientist

lee,eunjeong's photo.

lee,eunjeong
기하학수리물리연구단
more info

ITEM VIEW & DOWNLOAD

Toric Bruhat interval polytopes

DC Field Value Language
dc.contributor.authorEunjeong Lee-
dc.contributor.authorMasuda, Mikiya-
dc.contributor.authorPark, Seonjeong-
dc.date.accessioned2021-03-29T05:30:02Z-
dc.date.accessioned2021-03-29T05:30:02Z-
dc.date.available2021-03-29T05:30:02Z-
dc.date.available2021-03-29T05:30:02Z-
dc.date.created2021-02-23-
dc.date.issued2021-04-
dc.identifier.issn0097-3165-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/9274-
dc.description.abstractFor two elements v and w of the symmetric group S-n with v <= w in Bruhat order, the Bruhat interval polytope Q(v,w) is the convex hull of the points (z(1), ..., z(n)) is an element of R-n with v <= z <= w. It is known that the Bruhat interval polytope Q(v,w) is the moment map image of the Richardson variety X-w-1(v-1). We say that Q(v,w) is toricif the corresponding Richardson variety X-w-1(v-1) is a toric variety. We show that when Q(v,w) is toric, its combinatorial type is determined by the poset structure of the Bruhat interval [v, w] while this is not true unless Q(v,w) is toric. We are concerned with the problem of when Q(v,w) is (combinatorially equivalent to) a cube because Q(v,w) is a cube if and only if X-w-1(v-1) is a smooth toric variety. We show that a Bruhat interval polytope Q(v,w) is a cube if and only if Q(v,w) is toric and the Bruhat interval [v, w] is a Boolean algebra. We also give several sufficient conditions on vand wfor Q(v,w) to be a cube. (C) 2020 Elsevier Inc. All rights reserved.-
dc.language영어-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleToric Bruhat interval polytopes-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000605761700007-
dc.identifier.scopusid2-s2.0-85098073039-
dc.identifier.rimsid74651-
dc.contributor.affiliatedAuthorEunjeong Lee-
dc.identifier.doi10.1016/j.jcta.2020.105387-
dc.identifier.bibliographicCitationJOURNAL OF COMBINATORIAL THEORY SERIES A, v.179-
dc.relation.isPartOfJOURNAL OF COMBINATORIAL THEORY SERIES A-
dc.citation.titleJOURNAL OF COMBINATORIAL THEORY SERIES A-
dc.citation.volume179-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusBOTT TOWERS-
dc.subject.keywordAuthorBruhat interval polytopes-
dc.subject.keywordAuthorRichardson varieties-
dc.subject.keywordAuthorToric varieties-
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse