General lemmas for Berge–Turán hypergraph problems
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gerbner D. | - |
dc.contributor.author | Abhishek Methuku | - |
dc.contributor.author | Palmer C. | - |
dc.date.accessioned | 2021-01-19T02:30:01Z | - |
dc.date.accessioned | 2021-01-19T02:30:01Z | - |
dc.date.available | 2021-01-19T02:30:01Z | - |
dc.date.available | 2021-01-19T02:30:01Z | - |
dc.date.created | 2020-02-19 | - |
dc.date.issued | 2020-05 | - |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9074 | - |
dc.description.abstract | For a graph F, a hypergraph H is a Berge copy of F (or a Berge-F in short), if there is a bijection f:E(F)→E(H) such that for each e∈E(F) we have e⊂f(e). A hypergraph is Berge-F-free if it does not contain a Berge copy of F. We denote the maximum number of hyperedges in an n-vertex r-uniform Berge-F-free hypergraph by exr(n,Berge-F). In this paper we prove two general lemmas concerning the maximum size of a Berge-F-free hypergraph and use them to establish new results and improve several old results. In particular, we give bounds on exr(n,Berge-F) when F is a path (reproving a result of Győri, Katona and Lemons), a cycle (extending a result of Füredi and Özkahya), a theta graph (improving a result of He and Tait), or a K2,t (extending a result of Gerbner, Methuku and Vizer). We establish new bounds when F is a clique (which implies extensions of results by Maherani and Shahsiah and by Gyárfás) and when F is a general tree | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | Elsevier | - |
dc.title | General lemmas for Berge–Turán hypergraph problems | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000527928900010 | - |
dc.identifier.scopusid | 2-s2.0-85078103547 | - |
dc.identifier.rimsid | 71295 | - |
dc.contributor.affiliatedAuthor | Abhishek Methuku | - |
dc.identifier.doi | 10.1016/j.ejc.2020.103082 | - |
dc.identifier.bibliographicCitation | European Journal of Combinatorics, v.86 | - |
dc.citation.title | European Journal of Combinatorics | - |
dc.citation.volume | 86 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | 3-UNIFORM HYPERGRAPHS | - |
dc.subject.keywordAuthor | 3-UNIFORM HYPERGRAPHS | - |