BROWSE

Related Scientist

lazaroiu,caliniuliu's photo.

lazaroiu,caliniuliu
기하학수리물리연구단
more info

ITEM VIEW & DOWNLOAD

REAL PINOR BUNDLES AND REAL LIPSCHITZ STRUCTURES

DC Field Value Language
dc.contributor.authorCalin Iuliu Lazaroiu-
dc.contributor.authorC. S. Shabazi-
dc.date.accessioned2020-12-22T08:51:02Z-
dc.date.accessioned2020-12-22T08:51:02Z-
dc.date.available2020-12-22T08:51:02Z-
dc.date.available2020-12-22T08:51:02Z-
dc.date.created2020-06-29-
dc.date.issued2019-10-
dc.identifier.issn1093-6106-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/8747-
dc.description.abstract© 2019 International Press. Let (M, g) be a pseudo-Riemannian manifold of arbitrary dimension and signature. We prove that there exist mutually quasi-inverse equivalences between the groupoid of weakly faithful real pinor bundles on (M, g) and the groupoid of weakly faithful real Lipschitz structures on (M, g), from which follows that every bundle of weakly faithful real Clifford modules is associated to a real Lipschitz structure. The latter gives a generalization of spin structures based on certain groups which we call real Lipschitz groups. In the irreducible case, we classify real Lipschitz groups in all dimensions and signatures. Using this classification and the previous correspondence we obtain the topological obstruction to existence of a bundle of irreducible real Clifford modules over a pseudo-Riemannian manifold (M, g) of arbitrary dimension and signature. As a direct application of the previous results, we show that the supersymmetry generator of eleven-dimensional supergravity in "mostly plus" signature can be interpreted as a global section of a bundle of irreducible Clifford modules if and only if the underlying eleven-manifold is orientable and spin-
dc.language영어-
dc.publisherINT PRESS BOSTON, INC-
dc.titleREAL PINOR BUNDLES AND REAL LIPSCHITZ STRUCTURES-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000537889000003-
dc.identifier.scopusid2-s2.0-85086388648-
dc.identifier.rimsid72586-
dc.contributor.affiliatedAuthorCalin Iuliu Lazaroiu-
dc.identifier.doi10.4310/AJM.2019.v23.n5.a3-
dc.identifier.bibliographicCitationASIAN JOURNAL OF MATHEMATICS, v.23, no.5, pp.749 - 836-
dc.relation.isPartOfASIAN JOURNAL OF MATHEMATICS-
dc.citation.titleASIAN JOURNAL OF MATHEMATICS-
dc.citation.volume23-
dc.citation.number5-
dc.citation.startPage749-
dc.citation.endPage836-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusDIRAC OPERATOR-
dc.subject.keywordPlusKILLING SPINORS-
dc.subject.keywordAuthorSpinor bundles-
dc.subject.keywordAuthorpseudo-Riemannian manifolds-
dc.subject.keywordAuthorClifford algebras-
dc.subject.keywordAuthorLipschitz structures-
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse