Weighted Hurwitz Numbers and Topological Recursion
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alexander Aleksandrov | - |
dc.contributor.author | G. Chapuy | - |
dc.contributor.author | B. Eynard | - |
dc.contributor.author | J. Harnad | - |
dc.date.accessioned | 2020-12-22T06:51:57Z | - |
dc.date.accessioned | 2020-12-22T06:51:57Z | - |
dc.date.available | 2020-12-22T06:51:57Z | - |
dc.date.available | 2020-12-22T06:51:57Z | - |
dc.date.created | 2020-04-20 | - |
dc.date.issued | 2020-04 | - |
dc.identifier.issn | 0010-3616 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/8694 | - |
dc.description.abstract | © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.The KP and 2D Toda τ-functions of hypergeometric type that serve as generating functions for weighted single and double Hurwitz numbers are related to the topological recursion programme. A graphical representation of such weighted Hurwitz numbers is given in terms of weighted constellations. The associated classical and quantum spectral curves are derived, and these are interpreted combinatorially in terms of the graphical model. The pair correlators are given a finite Christoffel–Darboux representation and determinantal expressions are obtained for the multipair correlators. The genus expansion of the multicurrent correlators is shown to provide generating series for weighted Hurwitz numbers of fixed ramification profile lengths. The WKB series for the Baker function is derived and used to deduce the loop equations and the topological recursion relations in the case of polynomial weight functions | - |
dc.language | 영어 | - |
dc.publisher | SPRINGER | - |
dc.title | Weighted Hurwitz Numbers and Topological Recursion | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000521909600001 | - |
dc.identifier.scopusid | 2-s2.0-85082965123 | - |
dc.identifier.rimsid | 71910 | - |
dc.contributor.affiliatedAuthor | Alexander Aleksandrov | - |
dc.identifier.doi | 10.1007/s00220-020-03717-0 | - |
dc.identifier.bibliographicCitation | COMMUNICATIONS IN MATHEMATICAL PHYSICS, v.375, no.1, pp.237 - 305 | - |
dc.relation.isPartOf | COMMUNICATIONS IN MATHEMATICAL PHYSICS | - |
dc.citation.title | COMMUNICATIONS IN MATHEMATICAL PHYSICS | - |
dc.citation.volume | 375 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 237 | - |
dc.citation.endPage | 305 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |