BROWSE

Related Scientist

Zhonghai, LI's photo.

Zhonghai, LI
식물 노화·수명 연구단
more info

ITEM VIEW & DOWNLOAD

ATM suppresses leaf senescence triggered by DNA double-strand break through epigenetic control of senescence-associated genes in Arabidopsis

Cited 0 time in webofscience Cited 0 time in scopus
15 Viewed 0 Downloaded
Title
ATM suppresses leaf senescence triggered by DNA double-strand break through epigenetic control of senescence-associated genes in Arabidopsis
Author(s)
Zhonghai Li; Jin Hee Kim; Jeongsik Kim; Jae Il Lyu; Yi Zhang; Hongwei Guo; Hong Gil Nam; Hye Ryun Woo
Subject
Arabidopsis thaliana, ; ATM, ; DNA repair, ; double-strand breaks, ; histone methylation, ; leaf senescence
Publication Date
2020-07
Journal
NEW PHYTOLOGIST, v.227, no.2, pp.473 - 484
Publisher
WILEY
Abstract
© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. All living organisms are unavoidably exposed to various endogenous and environmental stresses that trigger potentially fatal DNA damage, including double-strand breaks (DSBs). Although a growing body of evidence indicates that DNA damage is one of the prime drivers of aging in animals, little is known regarding the importance of DNA damage and its repair on lifespan control in plants. We found that the level of DSBs increases but DNA repair efficiency decreases as Arabidopsis leaves age. Generation of DSBs by inducible expression of I-PpoI leads to premature senescence phenotypes. We examined the senescence phenotypes in the loss-of-function mutants for 13 key components of the DNA repair pathway and found that deficiency in ATAXIA TELANGIECTASIA MUTATED (ATM), the chief transducer of the DSB signal, results in premature senescence in Arabidopsis. ATM represses DSB-induced expression of senescence-associated genes, including the genes encoding the WRKY and NAC transcription factors, central components of the leaf senescence process, via modulation of histone lysine methylation. Our work highlights the significance of ATM in the control of leaf senescence and has significant implications for the conservation of aging mechanisms in animals and plants
URI
https://pr.ibs.re.kr/handle/8788114/7791
DOI
10.1111/nph.16535
ISSN
0028-646X
Appears in Collections:
Center for Plant Aging Research (식물 노화·수명 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse