Anthropogenic Intensification of Surface Ocean Interannual pCO2 Variability
DC Field | Value | Language |
---|---|---|
dc.contributor.author | M. Angeles Gallego | - |
dc.contributor.author | Axel Timmermann | - |
dc.contributor.author | Tobias Friedrich | - |
dc.contributor.author | Richard E. Zeebe | - |
dc.date.accessioned | 2020-12-22T02:57:57Z | - |
dc.date.accessioned | 2020-12-22T02:57:57Z | - |
dc.date.available | 2020-12-22T02:57:57Z | - |
dc.date.available | 2020-12-22T02:57:57Z | - |
dc.date.created | 2020-09-09 | - |
dc.date.issued | 2020-07 | - |
dc.identifier.issn | 0094-8276 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7776 | - |
dc.description.abstract | © 2020. American Geophysical Union. We use several global coupled atmosphere-ocean-biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5) to show that the global interannual variability of the sea surface pCO2 (calculated as 1σ) will increase by ∼64 ± 20% by 2040–2090 relative to the beginning of the industrial revolution under the RCP8.5 scenario. All models agree that the increase in variability is a consequence of a larger background pCO2 and a lower buffering capacity that enhance the response of pCO2 to the fluctuations of surface temperature (T) and dissolved inorganic carbon (DIC). The most skillful group of models under present-day conditions shows a future global decrease in DIC fluctuations that will weaken the pCO2 interannual variability (IAV). The remaining uncertainties in the projected evolution of pCO2 variability regionally highlight the need for continuous carbon monitoring programs which will contribute to a better understanding of the oceanic carbon sink's response to increased green house emissions | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | American Geophysical Union | - |
dc.title | Anthropogenic Intensification of Surface Ocean Interannual pCO2 Variability | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000551465400026 | - |
dc.identifier.scopusid | 2-s2.0-85087937597 | - |
dc.identifier.rimsid | 72773 | - |
dc.contributor.affiliatedAuthor | Axel Timmermann | - |
dc.identifier.doi | 10.1029/2020GL087104 | - |
dc.identifier.bibliographicCitation | Geophysical Research Letters, v.47, no.13, pp.e2020GL087 | - |
dc.citation.title | Geophysical Research Letters | - |
dc.citation.volume | 47 | - |
dc.citation.number | 13 | - |
dc.citation.startPage | e2020GL087 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | SEA CO2 FLUXES | - |
dc.subject.keywordPlus | NATURAL VARIABILITY | - |
dc.subject.keywordPlus | DECADAL VARIATIONS | - |
dc.subject.keywordPlus | SEASONAL CYCLE | - |
dc.subject.keywordPlus | PACIFIC | - |
dc.subject.keywordPlus | PCO(2) | - |
dc.subject.keywordPlus | CMIP5 | - |
dc.subject.keywordPlus | DRIVERS | - |
dc.subject.keywordPlus | CLIMATE | - |
dc.subject.keywordPlus | TRENDS | - |
dc.subject.keywordAuthor | oceanic pCO(2)</AUTHOR_KEYWORD> | - |
dc.subject.keywordAuthor | interannual variability</AUTHOR_KEYWORD> | - |
dc.subject.keywordAuthor | carbon dioxide</AUTHOR_KEYWORD> | - |
dc.subject.keywordAuthor | CMIP5 models</AUTHOR_KEYWORD> | - |
dc.subject.keywordAuthor | anthropogenic emissions</AUTHOR_KEYWORD> | - |