Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dániel Grósz | - |
dc.contributor.author | Abhishek Methuku | - |
dc.contributor.author | Casey Tompkins | - |
dc.date.accessioned | 2020-12-22T02:50:21Z | - |
dc.date.accessioned | 2020-12-22T02:50:21Z | - |
dc.date.available | 2020-12-22T02:50:21Z | - |
dc.date.available | 2020-12-22T02:50:21Z | - |
dc.date.created | 2020-04-20 | - |
dc.date.issued | 2020-08 | - |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7724 | - |
dc.description.abstract | © 2020 Elsevier Ltd. Let F=(U,E) be a graph and H=(V,E) be a hypergraph. We say that H contains a Berge-F if there exist injections ψ:U→V and φ:E→E such that for every e={u,v}∈E, {ψ(u),ψ(v)}⊂φ(e). Let exr(n,F) denote the maximum number of hyperedges in an r-uniform hypergraph on n vertices which does not contain a Berge-F. For small enough r and non-bipartite F, exr(n,F)=Ω(n2); we show that for sufficiently large r, exr(n,F)=o(n2). Let th(F)=min{r0:exr(n,F)=o(n2)for allr≥r0}. We show lower and upper bounds for th(F), the uniformity threshold of F. In particular, we obtain that th(△)=5, improving a result of Győri (2006). We also study the analogous problem for linear hypergraphs. Let exr L(n,F) denote the maximum number of hyperedges in an r-uniform linear hypergraph on n vertices which does not contain a Berge-F, and let the linear uniformity threshold thL(F)=min{r0:exr L(n,F)=o(n2)for allr≥r0}. We show that thL(F) is equal to the chromatic number of F | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD | - |
dc.title | Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000541875000008 | - |
dc.identifier.scopusid | 2-s2.0-85082512493 | - |
dc.identifier.rimsid | 71875 | - |
dc.contributor.affiliatedAuthor | Abhishek Methuku | - |
dc.contributor.affiliatedAuthor | Casey Tompkins | - |
dc.identifier.doi | 10.1016/j.ejc.2020.103109 | - |
dc.identifier.bibliographicCitation | EUROPEAN JOURNAL OF COMBINATORICS, v.88, pp.103109 | - |
dc.citation.title | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 88 | - |
dc.citation.startPage | 103109 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | GRAPHS | - |
dc.subject.keywordPlus | NUMBERS | - |