A conjecture of Gross and Zagier: Case e (Q)tor ≃ Z/2Z ⊕ Z/2Z, Z/2Z ⊕z/4Z or Z/2Z ⊕ Z/6Z
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Byeon D. | - |
dc.contributor.author | Kim, Taekyung | - |
dc.contributor.author | Yhee D. | - |
dc.date.accessioned | 2020-12-22T02:49:58Z | - |
dc.date.accessioned | 2020-12-22T02:49:58Z | - |
dc.date.available | 2020-12-22T02:49:58Z | - |
dc.date.available | 2020-12-22T02:49:58Z | - |
dc.date.created | 2020-06-29 | - |
dc.date.issued | 2020-08 | - |
dc.identifier.issn | 1793-0421 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7718 | - |
dc.description.abstract | © 2020 World Scientific Publishing Company. Let E be an elliptic curve defined over Q of conductor N, c the Manin constant of E, and m the product of Tamagawa numbers of E at prime divisors of N. Let K be an imaginary quadratic field where all prime divisors of N split in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group of E over K. Let 2uK be the number of roots of unity contained in K. Gross and Zagier conjectured that if PK has infinite order in E(K), then the integer c . m . uK .|III(E/K)|1 2 is divisible by |E(Q)tor|. In this paper, we show that this conjecture is true if E (Q)tor ≃ Z/2Z ⊕ Z/2Z, Z/2Z ⊕Z/4Z or Z/2Z ⊕ Z/6Z | - |
dc.language | 영어 | - |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | - |
dc.title | A conjecture of Gross and Zagier: Case e (Q)tor ≃ Z/2Z ⊕ Z/2Z, Z/2Z ⊕z/4Z or Z/2Z ⊕ Z/6Z | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000562048300009 | - |
dc.identifier.scopusid | 2-s2.0-85084797175 | - |
dc.identifier.rimsid | 72251 | - |
dc.contributor.affiliatedAuthor | Kim, Taekyung | - |
dc.identifier.doi | 10.1142/S1793042120500827 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF NUMBER THEORY, v.16, no.7, pp.1567 - 1572 | - |
dc.relation.isPartOf | INTERNATIONAL JOURNAL OF NUMBER THEORY | - |
dc.citation.title | INTERNATIONAL JOURNAL OF NUMBER THEORY | - |
dc.citation.volume | 16 | - |
dc.citation.number | 7 | - |
dc.citation.startPage | 1567 | - |
dc.citation.endPage | 1572 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordAuthor | Elliptic curves | - |
dc.subject.keywordAuthor | Manin constant | - |
dc.subject.keywordAuthor | Shafarevich-Tate group | - |
dc.subject.keywordAuthor | Tamagawa number | - |