Braiding quantum gates from partition algebras
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pramod Padmanabhan | - |
dc.contributor.author | Fumihiko Sugino | - |
dc.contributor.author | Diego Trancanelli | - |
dc.date.accessioned | 2020-12-22T02:48:21Z | - |
dc.date.accessioned | 2020-12-22T02:48:21Z | - |
dc.date.available | 2020-12-22T02:48:21Z | - |
dc.date.available | 2020-12-22T02:48:21Z | - |
dc.date.created | 2020-10-16 | - |
dc.date.issued | 2020-08 | - |
dc.identifier.issn | 2521-327X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7691 | - |
dc.description.abstract | © 2020 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften. Unitary braiding operators can be used as robust entangling quantum gates. We introduce a solution-generating technique to solve the (d, m, l)-generalized Yang-Baxter equation, for m/2 <= l <= m, which allows to systematically construct such braiding operators. This is achieved by using partition algebras, a generalization of the Temperley-Lieb algebra encountered in statistical mechanics. We obtain families of unitary and non-unitary braiding operators that generate the full braid group. Explicit examples are given for a 2-, 3-, and 4-qubit system, including the classification of the entangled states generated by these operators based on Stochastic Local Operations and Classical Communication | - |
dc.language | 영어 | - |
dc.publisher | VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF | - |
dc.title | Braiding quantum gates from partition algebras | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000563899900001 | - |
dc.identifier.scopusid | 2-s2.0-85092071482 | - |
dc.identifier.rimsid | 73074 | - |
dc.contributor.affiliatedAuthor | Pramod Padmanabhan | - |
dc.contributor.affiliatedAuthor | Fumihiko Sugino | - |
dc.identifier.doi | 10.22331/q-2020-08-27-311 | - |
dc.identifier.bibliographicCitation | Quantum, v.4, pp.311 | - |
dc.relation.isPartOf | Quantum | - |
dc.citation.title | Quantum | - |
dc.citation.volume | 4 | - |
dc.citation.startPage | 311 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Quantum Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Physics, Multidisciplinary | - |
dc.subject.keywordPlus | YANG-BAXTER EQUATION | - |
dc.subject.keywordPlus | EXTRASPECIAL 2-GROUPS | - |
dc.subject.keywordPlus | REPRESENTATIONS | - |