Compactness properties and local existence of weak solutions to the landau equation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hyung Ju Hwang | - |
dc.contributor.author | Jin Woo Jang | - |
dc.date.accessioned | 2020-12-22T02:44:47Z | - |
dc.date.accessioned | 2020-12-22T02:44:47Z | - |
dc.date.available | 2020-12-22T02:44:47Z | - |
dc.date.available | 2020-12-22T02:44:47Z | - |
dc.date.created | 2020-11-18 | - |
dc.date.issued | 2020-09 | - |
dc.identifier.issn | 0002-9939 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7624 | - |
dc.description.abstract | © 2020 American Mathematical Society. We consider the Landau equation nearby the Maxwellian equilibrium. Based on the assumptions on the boundedness of mass, energy, and entropy in the sense of Silvestre [J. Diffential Equations 262 (2017), no. 3, 3034–3055], we enjoy the locally uniform ellipticity of the linearized Landau operator to derive local-in-time L∞x,v uniform bounds. Then we establish a compactness theorem for the sequence of solutions using the L∞x,v bounds and the standard velocity averaging lemma. Finally, we pass to the limit and prove the local existence of a weak solution to the Cauchy problem. The highlight of this work is in the low-regularity setting where we only assume that the initial condition f0 is bounded in L∞x,v, whose size determines the maximal time-interval of the existence of the weak solution | - |
dc.language | 영어 | - |
dc.publisher | AMER MATHEMATICAL SOC | - |
dc.title | Compactness properties and local existence of weak solutions to the landau equation | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000583809400009 | - |
dc.identifier.scopusid | 2-s2.0-85094847424 | - |
dc.identifier.rimsid | 73692 | - |
dc.contributor.affiliatedAuthor | Jin Woo Jang | - |
dc.identifier.doi | 10.1090/proc/15173 | - |
dc.identifier.bibliographicCitation | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, v.148, no.12, pp.5141 - 5157 | - |
dc.relation.isPartOf | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | - |
dc.citation.title | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | - |
dc.citation.volume | 148 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 5141 | - |
dc.citation.endPage | 5157 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | HARNACK INEQUALITY | - |
dc.subject.keywordPlus | CAUCHY-PROBLEM | - |
dc.subject.keywordPlus | BOLTZMANN | - |
dc.subject.keywordPlus | C-ALPHA REGULARITY | - |
dc.subject.keywordAuthor | Landau equation | - |
dc.subject.keywordAuthor | collisional kinetic theory | - |
dc.subject.keywordAuthor | velocity averages | - |
dc.subject.keywordAuthor | Boltzmann equation | - |