BROWSE

Related Scientist

jang,jinwoo's photo.

jang,jinwoo
기하학수리물리연구단
more info

ITEM VIEW & DOWNLOAD

Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach

DC Field Value Language
dc.contributor.authorHwang H.J.-
dc.contributor.authorJang Jin Woo-
dc.contributor.authorJo H.-
dc.contributor.authorLee J.Y.-
dc.date.accessioned2020-12-22T02:44:37Z-
dc.date.accessioned2020-12-22T02:44:37Z-
dc.date.available2020-12-22T02:44:37Z-
dc.date.available2020-12-22T02:44:37Z-
dc.date.created2020-07-22-
dc.date.issued2020-10-
dc.identifier.issn0021-9991-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/7621-
dc.description.abstractThe issue of the relaxation to equilibrium has been at the core of the kinetic theory of rarefied gas dynamics. In the paper, we introduce the Deep Neural Network (DNN) approximated solutions to the kinetic Fokker-Planck equation in a bounded interval and study the large-time asymptotic behavior of the solutions and other physically relevant macroscopic quantities. We impose the varied types of boundary conditions including the inflow-type and the reflection-type boundaries as well as the varied diffusion and friction coefficients and study the boundary effects on the asymptotic behaviors. These include the predictions on the large-time behaviors of the pointwise values of the particle distribution and the macroscopic physical quantities including the total kinetic energy, the entropy, and the free energy. We also provide the theoretical supports for the pointwise convergence of the neural network solutions to the a priorianalytic solutions. We use the library PyTorch, the activation function tanhbetween layers, and the Adamoptimizer for the Deep Learning algorithm. (C) 2020 Elsevier Inc. All rights reserved.-
dc.language영어-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleTrend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000629857800012-
dc.identifier.scopusid2-s2.0-85086717176-
dc.identifier.rimsid72641-
dc.contributor.affiliatedAuthorJang Jin Woo-
dc.identifier.doi10.1016/j.jcp.2020.109665-
dc.identifier.bibliographicCitationJOURNAL OF COMPUTATIONAL PHYSICS, v.419, pp.109665-
dc.relation.isPartOfJOURNAL OF COMPUTATIONAL PHYSICS-
dc.citation.titleJOURNAL OF COMPUTATIONAL PHYSICS-
dc.citation.volume419-
dc.citation.startPage109665-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordAuthorFokker-Planck equation-
dc.subject.keywordAuthorAsymptotic behavior of solutions-
dc.subject.keywordAuthorKinetic theory of gases-
dc.subject.keywordAuthorArtificial intelligence-
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse