Branch-depth: Generalizing tree-depth of graphs
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Matt DeVos | - |
dc.contributor.author | O-joung Kwon | - |
dc.contributor.author | Sang-il Oum | - |
dc.date.accessioned | 2020-12-22T02:22:41Z | - |
dc.date.accessioned | 2020-12-22T02:22:42Z | - |
dc.date.available | 2020-12-22T02:22:41Z | - |
dc.date.available | 2020-12-22T02:22:42Z | - |
dc.date.created | 2020-09-09 | - |
dc.date.issued | 2020-12 | - |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7529 | - |
dc.description.abstract | © 2020 The Author(s). We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E) and a subset A of E we let λG(A) be the number of vertices incident with an edge in A and an edge in E∖A. For a subset X of V, let ρG(X) be the rank of the adjacency matrix between X and V∖X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by restriction | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD | - |
dc.title | Branch-depth: Generalizing tree-depth of graphs | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000565160300001 | - |
dc.identifier.scopusid | 2-s2.0-85087922057 | - |
dc.identifier.rimsid | 72828 | - |
dc.contributor.affiliatedAuthor | O-joung Kwon | - |
dc.contributor.affiliatedAuthor | Sang-il Oum | - |
dc.identifier.doi | 10.1016/j.ejc.2020.103186 | - |
dc.identifier.bibliographicCitation | EUROPEAN JOURNAL OF COMBINATORICS, v.90, pp.103186 | - |
dc.citation.title | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 90 | - |
dc.citation.startPage | 103186 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | MONADIC 2ND-ORDER LOGIC | - |
dc.subject.keywordPlus | RANK-WIDTH | - |
dc.subject.keywordPlus | MINORS | - |