BROWSE

Related Scientist

CNIR's photo.

CNIR
뇌과학 이미징 연구단
more info

ITEM VIEW & DOWNLOAD

Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice

Cited 0 time in webofscience Cited 0 time in scopus
28 Viewed 0 Downloaded
Title
Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice
Author(s)
Thi Ngoc Anh Dinh; Won Beom Jung; Hyun-Ji Shim; Seong-Gi Kim
Publication Date
2021-02
Journal
NeuroImage, v.226, pp.117542
Publisher
Academic Press
Abstract
The functional characteristics of the mouse visual system have not previously been well explored using fMRI. In this research, we examined 9.4 T BOLD fMRI responses to visual stimuli of varying pulse durations (1 - 50 ms) and temporal frequencies (1 - 10 Hz) under ketamine and xylazine anesthesia, and compared fMRI responses of anesthetized and awake mice. Under anesthesia, significant positive BOLD responses were detected bilaterally in the major structures of the visual pathways, including the dorsal lateral geniculate nuclei, superior colliculus, lateral posterior nucleus of thalamus, primary visual area, and higher-order visual area. BOLD responses increased slightly with pulse duration, were maximal at 3 - 5 Hz stimulation, and significantly decreased at 10 Hz, which were all consistent with previous neurophysiological findings. When the mice were awake, the BOLD fMRI response was faster in all active regions and stronger in the subcortical areas compared with the anesthesia condition. In the V1, the BOLD response was biphasic for 5 Hz stimulation and negative for 10 Hz stimulation under wakefulness, whereas prolonged positive BOLD responses were observed at both frequencies under anesthesia. Unexpected activation was detected in the extrastriate postrhinal area and non-visual subiculum complex under anesthesia, but not under wakefulness. Widespread positive BOLD activity under anesthesia likely results from the disinhibition and sensitization of excitatory neurons induced by ketamine. Overall, fMRI can be a viable tool for mapping brain-wide functional networks.
URI
https://pr.ibs.re.kr/handle/8788114/7496
DOI
10.1016/j.neuroimage.2020.117542
ISSN
1053-8119
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse