The Landau Equation with the Specular Reflection Boundary Condition
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guo, Y | - |
dc.contributor.author | Hwang, HJ | - |
dc.contributor.author | JinWoo Jang | - |
dc.contributor.author | Ouyang, ZM | - |
dc.date.available | 2020-07-06T06:42:02Z | - |
dc.date.created | 2020-04-07 | - |
dc.date.issued | 2020-06 | - |
dc.identifier.issn | 0003-9527 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7120 | - |
dc.description.abstract | The existence and stability of the Landau equation (1936) in a general bounded domain with a physical boundary condition is a long-outstanding open problem. This work proves the global stability of the Landau equation with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. The highlight of this work also comes from the low-regularity assumptions made for the initial distribution. This work generalizes the recent global stability result for the Landau equation in a periodic box (Kim et al. in Peking Math J, 2020). Our methods consist of the generalization of the wellposedness theory for the Fokker-Planck equation (Hwang et al. SIAM J Math Anal 50(2):2194-2232, 2018; Hwang et al. Arch Ration Mech Anal 214(1):183-233, 2014) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (Golse et al. Ann Sc Norm Super Pisa Cl Sci 19(1):253-295, 2019) and the Morrey estimates (Bramanti et al. J Math Anal Appl 200(2):332-354, 1996) to further control the velocity derivatives, which ensures the uniqueness. Our methods provide a new understanding of the grazing collisions in the Landau theory for an initial-boundary value problem. © Springer-Verlag GmbH Germany, part of Springer Nature (2020) | - |
dc.language | 영어 | - |
dc.publisher | SPRINGER | - |
dc.title | The Landau Equation with the Specular Reflection Boundary Condition | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000517436700002 | - |
dc.identifier.scopusid | 2-s2.0-85081388178 | - |
dc.identifier.rimsid | 71769 | - |
dc.contributor.affiliatedAuthor | JinWoo Jang | - |
dc.identifier.doi | 10.1007/s00205-020-01496-5 | - |
dc.identifier.bibliographicCitation | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, v.236, pp.1389 - 1454 | - |
dc.relation.isPartOf | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS | - |
dc.citation.title | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS | - |
dc.citation.volume | 236 | - |
dc.citation.startPage | 1389 | - |
dc.citation.endPage | 1454 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mechanics | - |
dc.subject.keywordPlus | FOKKER-PLANCK EQUATIONS | - |
dc.subject.keywordPlus | C-ALPHA REGULARITY | - |
dc.subject.keywordPlus | WEAK SOLUTIONS | - |
dc.subject.keywordPlus | HARNACK INEQUALITY | - |
dc.subject.keywordPlus | ULTRAPARABOLIC EQUATIONS | - |
dc.subject.keywordPlus | GLOBAL EXISTENCE | - |
dc.subject.keywordPlus | HARD POTENTIALS | - |
dc.subject.keywordPlus | CAUCHY-PROBLEM | - |
dc.subject.keywordPlus | BOLTZMANN | - |
dc.subject.keywordPlus | OPERATORS | - |