BROWSE

Related Scientist

grzybowski,bartoszandrzej's photo.

grzybowski,bartoszandrzej
인공지능및로봇기반합성연구단
more info

ITEM VIEW & DOWNLOAD

Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning

DC Field Value Language
dc.contributor.authorTomasz Badowski-
dc.contributor.authorEwa P. Gajewska-
dc.contributor.authorKarol Molga-
dc.contributor.authorBartosz A. Grzybowski-
dc.date.available2020-03-18T08:17:42Z-
dc.date.created2019-12-16-
dc.date.issued2020-01-
dc.identifier.issn1433-7851-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/7020-
dc.description.abstractWhen computers plan multistep syntheses, they can rely either on expert knowledge or information machine-extracted from large reaction repositories. Both approaches suffer from imperfect functions evaluating reaction choices: expert functions are heuristics based on chemical intuition, whereas machine learning (ML) relies on neural networks (NNs) that can make meaningful predictions only about popular reaction types. This paper shows that expert and ML approaches can be synergistic-specifically, when NNs are trained on literature data matched onto high-quality, expert-coded reaction rules, they achieve higher synthetic accuracy than either of the methods alone and, importantly, can also handle rare/specialized reaction types. c.2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.description.uri1-
dc.language영어-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectartificial intelligence-
dc.subjectcomputer-aided retrosynthesis-
dc.subjectexpert systems-
dc.subjectneural networks-
dc.titleSynergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000497490400001-
dc.identifier.scopusid2-s2.0-85075534968-
dc.identifier.rimsid70835-
dc.contributor.affiliatedAuthorBartosz A. Grzybowski-
dc.identifier.doi10.1002/anie.201912083-
dc.identifier.bibliographicCitationANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.59, no.2, pp.725 - 730-
dc.citation.titleANGEWANDTE CHEMIE-INTERNATIONAL EDITION-
dc.citation.volume59-
dc.citation.number2-
dc.citation.startPage725-
dc.citation.endPage730-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCOMPUTER-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthorcomputer-aided retrosynthesis-
dc.subject.keywordAuthorexpert systems-
dc.subject.keywordAuthorneural networks-
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2019_Barotsz_Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse