Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tomasz Badowski | - |
dc.contributor.author | Ewa P. Gajewska | - |
dc.contributor.author | Karol Molga | - |
dc.contributor.author | Bartosz A. Grzybowski | - |
dc.date.available | 2020-03-18T08:17:42Z | - |
dc.date.created | 2019-12-16 | - |
dc.date.issued | 2020-01 | - |
dc.identifier.issn | 1433-7851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7020 | - |
dc.description.abstract | When computers plan multistep syntheses, they can rely either on expert knowledge or information machine-extracted from large reaction repositories. Both approaches suffer from imperfect functions evaluating reaction choices: expert functions are heuristics based on chemical intuition, whereas machine learning (ML) relies on neural networks (NNs) that can make meaningful predictions only about popular reaction types. This paper shows that expert and ML approaches can be synergistic-specifically, when NNs are trained on literature data matched onto high-quality, expert-coded reaction rules, they achieve higher synthetic accuracy than either of the methods alone and, importantly, can also handle rare/specialized reaction types. c.2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | artificial intelligence | - |
dc.subject | computer-aided retrosynthesis | - |
dc.subject | expert systems | - |
dc.subject | neural networks | - |
dc.title | Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000497490400001 | - |
dc.identifier.scopusid | 2-s2.0-85075534968 | - |
dc.identifier.rimsid | 70835 | - |
dc.contributor.affiliatedAuthor | Bartosz A. Grzybowski | - |
dc.identifier.doi | 10.1002/anie.201912083 | - |
dc.identifier.bibliographicCitation | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.59, no.2, pp.725 - 730 | - |
dc.citation.title | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION | - |
dc.citation.volume | 59 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 725 | - |
dc.citation.endPage | 730 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | COMPUTER | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordAuthor | artificial intelligence | - |
dc.subject.keywordAuthor | computer-aided retrosynthesis | - |
dc.subject.keywordAuthor | expert systems | - |
dc.subject.keywordAuthor | neural networks | - |