N = 1 Geometric Supergravity and Chiral Triples on Riemann Surfaces
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vicente Cortés | - |
dc.contributor.author | Calin Iuliu Lazaroiu | - |
dc.contributor.author | C. S. Shahbazi | - |
dc.date.available | 2020-01-31T00:56:24Z | - |
dc.date.created | 2019-12-31 | - |
dc.date.issued | 2020-04 | - |
dc.identifier.issn | 0010-3616 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6929 | - |
dc.description.abstract | We construct a global geometric model for the bosonic sector and Killing spinor equations of four-dimensional N = 1 supergravity coupled to a chiral non-linear sigma model and a Spinc 0 structure. The model involves a Lorentzian metric g on a four-manifold M, a complex chiral spinor and a map ϕ : M →Mfrom M to a complex manifold M endowed with a novel geometric structure which we call a chiral triple. Using this geometric model, we show that if M is spin then the Kähler-Hodge condition on M suffices to guarantee the existence of an associated N = 1 chiral geometric supergravity. This positively answers a conjecture proposed by D. Z. Freedman and A. V. Proeyen. We dimensionally reduce the Killing spinor equations to a Riemann surface X, obtaining a novel system of partial differential equations for a harmonic map with potential ϕ : X → M. We characterize all Riemann surfaces X admitting supersymmetric solutions with vanishing superpotential, showing that such solutions ϕ are holomorphicmaps satisfying a certain condition involving the canonical bundle of X and the chiral triple of the theory. Furthermore, we determine the biholomorphism type of all Riemann surfaces carrying supersymmetric solutions with complete Riemannian metric and finite-energy scalar map ϕ. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | SPRINGER | - |
dc.title | N = 1 Geometric Supergravity and Chiral Triples on Riemann Surfaces | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000528798500010 | - |
dc.identifier.scopusid | 2-s2.0-85067250445 | - |
dc.identifier.rimsid | 70994 | - |
dc.contributor.affiliatedAuthor | Calin Iuliu Lazaroiu | - |
dc.identifier.doi | 10.1007/s00220-019-03476-7 | - |
dc.identifier.bibliographicCitation | COMMUNICATIONS IN MATHEMATICAL PHYSICS, v.375, no.1, pp.429 - 478 | - |
dc.citation.title | COMMUNICATIONS IN MATHEMATICAL PHYSICS | - |
dc.citation.volume | 375 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 429 | - |
dc.citation.endPage | 478 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | KILLING SPINORS | - |
dc.subject.keywordPlus | DUALITY | - |
dc.subject.keywordPlus | DIMENSIONS | - |
dc.subject.keywordPlus | CURVATURE | - |
dc.subject.keywordPlus | PARALLEL | - |
dc.subject.keywordPlus | EQUATION | - |