BROWSE

Related Scientist

cn's photo.

cn
나노의학연구단
more info

ITEM VIEW & DOWNLOAD

Ultracompliant Carbon Nanotube Direct Bladder Device

DC Field Value Language
dc.contributor.authorDongxiao Yan-
dc.contributor.authorTim M. Bruns-
dc.contributor.authorYuting Wu-
dc.contributor.authorLauren L. Zimmerman-
dc.contributor.authorChris Stephan-
dc.contributor.authorAnne P. Cameron-
dc.contributor.authorEuisik Yoon-
dc.contributor.authorJohn P. Seymour-
dc.date.available2020-01-31T00:54:02Z-
dc.date.created2019-11-18-
dc.date.issued2019-10-
dc.identifier.issn2192-2640-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/6838-
dc.description.abstract© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimThe bladder, stomach, intestines, heart, and lungs all move dynamically to achieve their purpose. A long-term implantable device that can attach onto an organ, sense its movement, and deliver current to modify the organ function would be useful in many therapeutic applications. The bladder, for example, can suffer from incomplete contractions that result in urinary retention with patients requiring catheterization. Those affected may benefit from a combination of a strain sensor and electrical stimulator to better control bladder emptying. The materials and design of such a device made from thin layer carbon nanotube (CNT) and Ecoflex 00–50 are described and demonstrate its function with in vivo feline bladders. During bench-top characterization, the resistive and capacitive sensors exhibit stability throughout 5000 stretching cycles under physiology conditions. In vivo measurements with piezoresistive devices show a high correlation between sensor resistance and volume. Stimulation driven from platinum-silicone composite electrodes successfully induce bladder contraction. A method for reliable connection and packaging of medical grade wire to the CNT device is also presented. This work is an important step toward the translation of low-durometer elastomers, stretchable CNT percolation, and platinum-silicone composite, which are ideal for large-strain bioelectric applications to sense or modulate dynamic organ states-
dc.description.uri1-
dc.language영어-
dc.publisherWILEY-
dc.subjectbiomedical implantable device-
dc.subjectbladder control-
dc.subjectcarbon nanotube-
dc.subjectspinal cord injury-
dc.subjectstretchable electronics-
dc.titleUltracompliant Carbon Nanotube Direct Bladder Device-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000492353200005-
dc.identifier.scopusid2-s2.0-85073954462-
dc.identifier.rimsid70439-
dc.contributor.affiliatedAuthorEuisik Yoon-
dc.identifier.doi10.1002/adhm.201900477-
dc.identifier.bibliographicCitationADVANCED HEALTHCARE MATERIALS, v.8, no.20, pp.1900477-
dc.citation.titleADVANCED HEALTHCARE MATERIALS-
dc.citation.volume8-
dc.citation.number20-
dc.citation.startPage1900477-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusPIEZORESISTIVE PROPERTIES-
dc.subject.keywordPlusDETRUSOR UNDERACTIVITY-
dc.subject.keywordPlusNEURAL STIMULATION-
dc.subject.keywordPlusSTRAIN SENSORS-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusPRIORITIES-
dc.subject.keywordPlusVOLUME-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorbiomedical implantable device-
dc.subject.keywordAuthorbladder control-
dc.subject.keywordAuthorcarbon nanotube-
dc.subject.keywordAuthorspinal cord injury-
dc.subject.keywordAuthorstretchable electronics-
Appears in Collections:
Center for Nanomedicine (나노의학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2019_Ultracompliant Carbon Nanotube Direct Bladder Device.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse